DISEASE NOTE

ONION YELLOW DWARF VIRUS ON LEEK, ONION, SHALLOT AND WELSH ONION IN IRAN

Z. Naderi Saffari, S. Torabi, M. Naghavi, A.R. Golnaraghi and E. Aryakia

1Department of Plant Biotechnology, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
2Department of Plant Breeding, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
3Department of Biotechnology, University of Tehran, Karaj, Iran
4Department of Plant Protection, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
5Iranian Biological Resource Center, Tehran, Iran

During summer of 2011-2012, bulb samples from alliaceous vegetables, i.e. garlic (*Allium sativum*), leek (*Allium porrum*), onion (*Allium cepa*), shallot (*Allium hirtifolium*) and Welsh onion (*Allium fistulosum*) were collected from Azarbaijan-e-sharghi, Hamedan, Kerman, Khuzestan, Lorestan, Mazandaran, Markazi and Zanjan provinces of Iran to determine the presence of *Onion yellow dwarf virus* (OYDV), genus *Potyvirus*. Collected bulbs were planted in plastic pots and the resulting plantlets were tested individually at the two-leaf stage by indirect ELISA using the “Poty group test” kit from Bioreba (Switzerland). ELISA-positive samples were subsequently tested by RT-PCR using previously described specific primers to amplify a region in the 3’ end of the OYDV genome (Van der Vlugt et al., 1999). RT-PCR resulted in the amplification of an expected fragment of ca. 0.5 kb in size for 30 out of 35 ELISA-positive seedlings from garlic, leek, onion, shallot and Welsh onion bulbs, confirming the presence of OYDV. Symptoms of mosaic and yellow streak striping, curling and distortion of flower stems were associated with potyvirus infections. OYDV was previously reported on garlic in Iran (Baghalian et al., 2010) but this is the first report of its natural occurrence on leek, onion, shallot and Welsh onion in the mid-Eurasia of Iran.

DISEASE NOTE

FIRST REPORT OF PERONOSPORA SPARSA ON ROSA spp. IN MEXICO

D. López-Guisa, M.J. Yáñez-Morales and I. Alanis-Martínez

Programa de Fitopatología, Colegio de Postgraduados, Campus Montecillo. Km 36.5 Carrera México-Texcoco. Montecillo, Mpio. de Texcoco, 56230 Estado de México, México

In Mexico, the state of Mexico is the main producer of greenhouse-grown roses (*Rosa* spp.) with ca. 650 ha in production. During the seasons of high relative humidity and mild temperatures, yellow to red or purplish rectangular spots delimited by veins were observed on the leaves, whereas on stems and sepals the spots were rounded and reddish to purple. Incidence ranged from 27 to 74% and, in severe cases, plants were defoliated. The pathogen associated with the disease was identified as *Peronospora sparsa* Berk. based on: the symptomatology shown by leaves and stems of six rose cultivars (Conga, Grande Classe, Opera, Polo, Titanic and Vendela), that were collected during July 2012 in Villa Guerrero (18.97 N, 99.65 W), state of Mexico; sequencing products of the ITS region of rDNA amplified by nested PCR (Lindqvist et al., 1998) using primers PS3 and PS1 (Aegerter et al., 2002) and morphological characters (Horst and Cloyd, 2007). Hyaline sporangiophores emerging from stomata were observed on the underside of the leaves, which were 300-625 μm in size, branched 3-4 times, with bifurcated tips 5-22 μm in size. Sporangia were hyaline, subglobose to ellipsoid possessed occasionally a tiny stalk and measured 14.22 × 13.20 μm. No structures were found on stems. The sequence of ITS-rDNA region (GenBank accession No. KF541660) showed 99.1% of similarity index with *P. sparsa* on *Rosa multiflora* (AY608610). In the region of study, disease management consists mainly of fungicide applications every 5-7 days, failing which the pathogen will affect flower bud aperture and size, thus reducing commercial value of the crop. To our knowledge, this is the first report in Mexico of downy mildew of roses induced by *P. sparsa*.

Corresponding author: D. López-Guisa
Fax: +52.595.9510279
E-mail: lopez.guisa@hotmail.com; yanezm@colpos.mx
Received September 16, 2013
Accepted September 20, 2013

Corresponding author: S. Torabi
Fax: +98.21.44865464
E-mail: storabi_ir@yahoo.com
Received September 9, 2013
Accepted November 2, 2013