DISEASE NOTE

BOTRYTIS CINEREA, NEW PATHOGEN INFECTING OREGANO CROPS IN ARGENTINA

P.F. Caligiore Gei and R.J. Piccolo
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria La Consulta, Ex Ruta 40 km 96 (3567)
San Carlos, Mendoza, Argentina

In October 2013 plants with necrotic leaves and cankers on the stems were observed in oregano crops (Origanum vulgare ssp. hirtum) at Tres Esquinas (Mendoza, Argentina). The necrosis had a basipetal progress, affected the center of the bush and, in some cases, resulted in the death of the plant. Following isolation on potato dextrose agar (PDA), effuse greyish to brown colonies developed, which produced irregular black sclerotia. The mycelium was branched, septate, hyaline to brown-coloured and produced conidiophores bearing one-celled, egg-shaped and hyaline conidia, grouped in glistening heads. Based on these morphological traits, the fungus was tentatively catalogued as Botrytis sp. (Ellis, 1971), until molecular identification was performed. Its pathogenicity was tested by inoculating oregano stems with agar plugs from fungal colonies, while control plants were inoculated with sterile agar plugs. The plants were covered with a plastic bag for 24 h. After 5 days, the field syndrome was reproduced in inoculated plants, which showed an infection process. From these plants the pathogen was successfully re-isolated, fulfilling Koch's postulates. Molecular identification was carried out by PCR amplification using the primer pair ITS1/ITS4 (Altschul et al., 1990). The amplified product was purified, sequenced (GenBank accession No. KT921335) and compared with the equivalent sequences from database. A complete 510 bp amplicon had 99% homology with the sequence of G. magnicellulatus (KT953357). The 510 bp amplicon had 99% homology with the sequence of Golovinomyces magnicellulatus (AB769441.1), confirming the relationship between G. magnicellulatus and P. paniculata as recently reported in the phylogenetic analysis of the genus Golovinomyces (Takamatsu et al., 2013). In pathogenicity tests, leaves affected by powdery mildew were gently pressed onto three healthy plants of P. paniculata, which were then were maintained at temperatures ranging from 20 to 26°C. Three non-inoculated plants were used as controls. Fifteen days post inoculation, the first symptoms appeared only on inoculated plants. G. magnicellulatus has been reported on P. paniculata in Great Britain (Jones and Baker, 2007). This is the first report of G. magnicellulatus on P. paniculata in Italy.


DISEASE NOTE

POWDERY MILDEW CAUSED BY GOLOVINOMYCES MAGNICELLOLATUS ON PHLOX PANICULATA IN ITALY

A. Garibaldi, D. Bertetti, S. Franco Ortega and M.L. Gullino
Centre for the Agro-Environmental Innovation (AGROINNOVA), University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy

During summer and the following autumn 2015, about a hundred plants of Phlox paniculata growing in a garden near Biella (northern Italy) showed symptoms and signs of an unknown powdery mildew. Leaves, stems and inflorescences were covered by a white mycelium that produced hyaline, elliptical conidia measuring 28-35 × 16-21 (mean: 31 × 18) μm. Conidia germinated apically with short, rather clavate germ tubes. Fibrosin bodies were absent. Many chasmothecia, 100-162 (mean: 130) μm in size, formed dark patches on all the affected tissues, particularly on the upper leaf surface. Chasmothecia contained 8-15 shortly stalked, 2-spored asci measuring 44-85 × 24-40 (mean: 62 × 29) μm. Spores were ellipsoid to subglobose and measured 21-30 × 14-21 (mean: 25 × 18) μm. The ITS region of rDNA extracted from fruiting bodies was amplified using the primers ITS1/ITS4 (Altschul et al., 1997) and sequenced (GenBank accession No. KT953357). The 510 bp amplicon had 99% homology with the sequence of Golovinomyces magnicellulatus (AB769441.1), confirming the relationship between G. magnicellulatus and P. paniculata as reported in the phylogenetic analysis of the genus Golovinomyces (Takamatsu et al., 2013). In pathogenicity tests, leaves affected by powdery mildew were gently pressed onto three healthy plants of P. paniculata, which were then were maintained at temperatures ranging from 20 to 26°C. Three non-inoculated plants were used as controls. Fifteen days post inoculation, the first symptoms appeared only on inoculated plants. G. magnicellulatus has been reported on P. paniculata in Great Britain (Jones and Baker, 2007). This is the first report of G. magnicellulatus on P. paniculata in Italy.