DISEASE NOTE

FIRST REPORT OF
TOMATO SPOTTED WILT VIRUS INFECTING PUMPKIN IN CHINA

X.H. Sun, L.L. Gao, S.L. Wang, C.L. Wang, Y.Y. Yang, X.Y. Wang and X.P. Zhu

Shandong provincial Key Laboratory for biology of vegetable diseases and insect pests, Department of plant pathology, Shandong Agricultural University, Tai’an, 271018, Shandong, China

In August 2015, symptomatic pumpkin (Cucurbita moschata Duch.) plants were observed in Linyi, Shandong province, China. Plants exhibited symptoms of leaf mottling, crinkling and mosaic which appeared similar to symptoms caused by Tomato spotted wilt virus (TSWV) (Karavina et al., 2016). Twenty field samples, two symptomatic and 18 asymptomatic, were collected. A high incidence of thrips (Thrips palmi) was also observed in the field and on the sampling plants. Given the symptoms observed and the prevalence of thrips, TSWV infection was suspected. Total RNA was extracted from symptomatic and asymptomatic plants and analyzed by RT-PCR using specific primer pair TSWV-F1 (5’-CACACTAAGCAAGCACA-3’) / TSWV-R1 (5’-TCAGTCTTACAAATCATC-3’), designed for this study, corresponding to a highly conserved region including the complete nucleocapsid protein (N) gene. Fragments of the expected size (976bp) were amplified from the symptomatic but not from the asymptomatic samples, and one of them was cloned and sequenced (KX185153). No other viruses were detected. The incidence of TSWV in the four acres pumpkin field surveyed was 0.45%. Sequence comparisons revealed that the N gene of this isolate shared the highest nucleotide identity with those from South Korea and Japan as a separate group. TSWV (genus Tospovirus, family Bunyaviridae) has an extensive host range (Cho et al., 1987) of which tomato, pepper, peanut and tobacco are common susceptible host crops. TSWV has been reported to infect tomato, tobacco and other plants (Dong et al., 2010) in China. To our knowledge, this is the first report of TSWV infecting pumpkin in China.

This work was funded by Shandong Science and Technology Development Plan (ZR2012CM032) and Shandong Natural Science Foundation (ZR2015CQ022).


Corresponding author: X.P. Zhu
E-mail: zhuxp@sdau.edu.cn

Received July 1, 2016
Accepted September 14, 2016

DISEASE NOTE

FIRST REPORT OF
PAPAYA RINGSPOT VIRUS INFECTING CARICA PAPAYA IN ARGENTINA

D. Cabrera Mederos1, 2, A. Dal Zotto1, E. Galdeano3, O. Portal4 and F. Giolitti1

1Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CLAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA Córdoba, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
3Facultad de Ciencias Agrarias (UNNE), Instituto de Botánica del Nordeste, UNNE-CONICET, Sargento Cabral 2131, W3402BKG Corrientes, Argentina
4Departamento de Biología, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, road to Camaquari km 5.5, 54830 Santa Clara, Cuba

Papaya plants (Carica papaya L.) with severe leaf mosaic and deformation symptoms were observed and collected in the Formosa, Corrientes and Misiones provinces of northern Argentina. These symptoms were similar to those induced by Papaya ringspot virus (PRSV-P) (Tripathi et al., 2008). Electron microscopy observations of leaf dip preparations from symptomatic papaya leaves revealed typical flexuous potyvirus particles of ca. 800 × 12 nm (Franceti et al., 1985). Papaya leaf extracts from affected plants were mechanically inoculated on healthy papaya plants, which showed typical symptoms of the disease. The presence of the virus in symptomatic plants was tested and confirmed by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), using a specific PRSV antisem (Agdia, Elkhart, IN). Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and tested by reverse transcription-polymerase chain reaction (RT-PCR) with specific PRSV coat protein gene primers: BoCP_FWD 5’-TCAAGAATGAACTGTGGAGACGCTGTTT-3’ and BoCP_REV 5’-TYAGTTGCGCATACCCAGGAGAGT-3’. The RT-PCR amplicons of the expected size were purified and directly sequenced in both directions at Macrogen Inc. (Seoul, Korea). BLASTn analysis of the sequenced fragments (828 bp) (GenBank accession Nos. KX385113 to KX385116) showed 97 to 98% nucleotide sequence identity with previously reported PRSV-P isolates from Brazil (AF344462, JQ755427, JQ755424).

To the best of our knowledge, this is the first report of the occurrence of PRSV in papaya plants in Argentina. Due to the devastating effects of PRSV in papaya (Tripathi et al., 2008) and the recent increase of cultivation area in northern Argentina, it becomes necessary to implement management strategies to control this disease and avoid the introduction of the virus into new production areas.

This work was supported in part by the PNPV 1135022 project of INTA. The authors thank Cristian Éric Stolar (EEA Cerro Azul-INTA, Misiones) and Ceferrino Flores (EEA Yuto-INTA, Jujuy), by collecting papaya samples.


Corresponding author: D. Cabrera Mederos
E-mail: cabrera.dariel@inta.gob.ar

Received June 16, 2016
Accepted June 20, 2016