DISEASE NOTE
IDENTIFICATION OF COTTON LEAF CURL KOKHRAN VIRUS AND MULTIPLE SATELLITE MOLECULES INFECTING JASMINUM SAMBAC IN PAKISTAN

A. Akram1,2, G. Rasool1,2,3, A. Rehman1, S. Mansoor4, R.W. Briddon1 and M. Saeed1

1 Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
2 Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad, Pakistan
3 Present Address: Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, Ghazi University, D.G. Khan

Jasminum sambac is grown as an ornamental across Southern Asia. Amongst a group of 15 J. sambac plants growing next to cotton fields in Faisalabad in 2016, four were exhibiting mild leaf curling, yellowing and vein-thickening, typical of begomovirus infection. DNA was extracted from the leaves of two symptomatic and one non-symptomatic plant using the CTAB method. DNA fragments of ca. 2.8 kb were PCR amplified and cloned from the symptomatic (plants p1 and p2) and non-symptomatic (plant p3) plants with begomovirus-specific primers BF/BR (Mubin et al., 2011). The sequences of three clones (GenBank accession Nos. KY797661-KY797663 from p1 to p3, respectively) showed 99% nucleotide sequence identity with cotton leaf curl Kokhran virus (CLCuKoV; AJ496286). Betasatellites and alphasatellites were amplified using primers beta01/beta02 and DNA101/DNA102, respectively (Mubin et al., 2011). The sequences of two betasatellites [KY797668 (p2) and KY797669 (p3)] and a partial sequence (p1) showed 99% sequence identity with cotton leaf curl Multan betasatellite (CLCuMuB; FN432359). Three alphasatellite clones (KY797664-KY797666, from p1 and p3, respectively) had 99% sequence identity with guar leaf curl alphasetellite (HE599396) and one (KY797667; p3) had 98% sequence identity with okra leaf curl alphasetellite (AJ912954).

Marwal et al. (2013) previously showed J. sambac in India to be infected with a begomovirus based on partial sequences. This is the first report of J. sambac being a host for CLCuKoV, CLCuMuB and alphasatellites which are associated with cotton leaf curl disease in South Asia. This shows J. sambac is an alternative, sometimes asymptomatic host for economically important, crop-infecting begomoviruses on the subcontinent.


Corresponding author: M. Saeed
E-mail: saeed_hafeez@yahoo.com

Received June 19, 2017
Accepted September 9, 2017

DISEASE NOTE
FIRST REPORT OF PLEUROSTOMA RICHARDSIAE ASSOCIATED WITH GRAPEVINE DECLINE DISEASES OF GRAPEVINE IN TURKEY

S. Özben1, F. Demirci2, K. Değirmenci3 and S. Uzunok1

1 Plant Protection Central Research Institute, Ankara, Turkey
2 University of Ankara, Faculty of Agriculture, Department of Plant Protection, Ankara, Turkey
3 Sentromer Building, Construction and Agricultural Research Limited Company, Ankara, Turkey

Pleurostoma richardsiae (Nannfeldt) Řeblová & Jaklitsch is a lesser known grapevine trunk fungus that can cause black vascular streaking, brown necrosis and white rot (Halleen et al., 2007). During a survey to determine fungi associated with trunk diseases in young vineyards in Anakara province, trunk samples were collected from vines with decline symptoms. Of the various fungi isolated from internal brown vascular streaks and dark spots around the pith, one isolate was identified as P. richardsiae based on morphological characters (Carlucci et al., 2015). Actin and beta-tubulin sequences were generated from our isolate with primer pairs act512/act783 and T1/Bt2b (GenBank accession Nos. KY496707 and KY496708) and isolates had 8% and 94% genetic identity with corresponding sequences from the type of P. richardsiae (CBS 270.33; AY579271 and AY579334). Pathogenicity tests were carried out on green shoots of grapevine cv. Sultana using agar plugs (5 mm) from 10-day-old cultures grown on PDA at 23 ± 2°C. Controls were inoculated with sterile agar plugs. Four months after inoculation the fungus was reisolated from symptomatic inoculated shoots, fulfilling Koch’s postulates (Carlucci et al., 2015). Control plants were asymptomatic and P. richardsiae was not recovered. To our knowledge, this is the first report of P. richardsiae associated with trunk diseases of grapevine in Turkey.


Corresponding author: S. Özben
E-mail: ozbensureyya@hotmail.com

Received June 21, 2017
Accepted August 28, 2017