Disease Note

Occurrence of Crown Rot of Gazania and Gerber Caused by Sclerotinia sclerotiorum in Argentina

S.M. Wolcan

Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
CIDEFI, Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119, 1900 La Plata, Buenos Aires, Argentina

Gazania x hybrid (gazania) and Gerbera jamersonii (African daisy, gerber) are perennial ornamental plants valuable for their colourful daisy-like flowers. Gazania is used as potted flower or as landscape, while gerber is mainly cropped as cut flower. The production area is located in the outskirts of La Plata and Buenos Aires cities. Since 1999 on gazania and since 2000 on gerber, potted plants have showed sudden wilt and basal rot symptoms, from autumn to spring at different stages of growth. Symptoms included yellowing and grey or tan discoloration of leaves and stem necrosis at the soil line. As stem necrosis progressed, necrotic tissues became covered with mycelium that produced black and irregular sclerotia. Infected plants wilted and died but when temperature raised or humidity descended, some stems remained healthy. The isolations obtained from sclerotia on PDA, produced cultures with mycelium and sclerotia characteristic of *Sclerotinia sclerotiorum* (Lib.) de Bary. Wilt or crown rot on these ornamentals has been reported in Europe, Asia and America (Viegas, 1961, Bolland and Hall, 1994; Garibaldi et al., 2001). Cross inoculation were conducted employing rice kernels infested with isolates from gazania and gerber separately. Five g of inoculum were mixed with the upper soil level around the stems of potted mature plants of both ornamentals. For each ornamental, six plants were inoculated with each *Sclerotinia* isolate and six ones that received sterile kernels served as controls. Plants were covered with plastic bags during 48 h and were kept at 16-19°C. All inoculated plants showed wilting after 7-10 days while controls remained healthy. *S. sclerotiorum* was recovered only from inoculated plants. This is the first record of *S. sclerotiorum* on *Gazania x hybrid* and on *G. jamersonii* in Argentina.

Disease Note

Preseence of Banana Streak Virus Ol in Desert Bananas in Maracay, Venezuela

M.J. Garrido¹, A. Ordosgoitti² and B.E.L. Lockhart³

¹ Universidad Central de Venezuela, Facultad de Agronomía, Laboratorio de Virología Vegetal, Apartado 4579, Maracay 2101, Venezuela
² INIA, Centro Nacional de Investigaciones Agropecuarias, Departamento de Protección Vegetal, Apartado 4653, Maracay 2101, Venezuela
³ University of Minnesota, Twin Cities Campus, Department of Plant Pathology, St. Paul, MN 55108, USA

Symptoms of a virus like disease were observed in desert banana (Musa AAA group, Cavendish subgroup cv Pinoe gigante) plants. These were characterized by broken or continuous chlorotic streaks, or spindle-shaped patterns that were chlorotic at first and then become increasingly dark in colour, and finally resulted in black streaking in older leaves. In two samples, *Banana streak virus* (BSV) was detected by electron microscopy and immunosorbent electron microscopy. The typing of the BSV isolates was done on partially-purified leaf extracts by immunocapture followed by polymerase chain reaction using isolate-specific oligonucleotide primers and polyvalent BSV antiserum PMx-R2C (Geering et al., 2000). The results showed that BSV strain OL (=BSV-Onne), recently renamed Banana streak Obino L'Ewai virus, BSOLV (A. Geering, personal communication), was present in the two samples from desert bananas. This is an interesting observation because BSOLV is known to be integrated in the *Musa* genome and there is evidence that BSOLV infection can arise from these integrated sequences. However, it has recently been showed that the integrated BSOLV sequence occurs in the *Musa* B genome but not in the *Musa* A genome (Geering et al., 2001). This implies that BSOLV infection in desert bananas can arise only from an external source, and suggests that insect vectors are transmitting the virus from plantain (AAB) to dessert bananas. This is the first report of this virus in Maracy, Venezuela.

Corresponding author: S.M. Wolcan
Fax: +54.221.4252346
E-mail: swolcan@interar1.com.ar
Received 26 June 2004
Accepted 9 July 2004

Corresponding author: M.J. Garrido
Fax: +58.243.2465360
E-mail: majoga@cantv.net
Received 25 August 2004
Accepted 8 September 2004
DISEASE NOTE

FIRST RECORD OF PEACH LATENT MOSAIC VIROID AND HOP STUNT VIROID IN BOSNIA AND HERZEGOVINA

S. Matic, M. Al-Rwahnih and A. Myrta

Istituto Agronomico Mediterraneo, Via Ceglie 9, 70010 Valenzano, Italy

During a survey for the evaluation of the sanitary status of the stone fruit industry of Bosnia and Herzegovina, 410 samples were collected from 33 commercial orchards and 2 nurseries, and tested for the presence of *Peach latent mosaic viroid* (PLMVd) and *Hop stunt viroid* (HSVd). Samples were from 230 plants of plum, 77 of peach, 65 of cherry, 11 of apricot, and 27 of other *Prunus* species (myrobalan and blackthorn) growing in the surroundings of Banja Luka, Gradacac, Sarajevo, or Mostar. All samples were tested by tissue-print hybridization (Pallás et al., 2003), by pressing the freshly cut end of a leaf petiole onto a Hybond N⁺ nylon membrane and hybridizing it at 55°C with SP6 and T7 RNA polymerase-generated full-length digoxigenin-labelled viroidal cRNA probes (Shamloul et al., 1995; Astruc et al., 1996). About 10% of the samples (43 of 410) were found to be infected by viroids. In particular, PLMVd was detected in 39 plants of peach, and HSVd in two of apricot and two of plum. Positive samples were from both native and imported cultivars. Interestingly, among PLMVd-infected peaches, two were seedlings. Whether the infection had come via pruning tools or via seeds remains to be established. This report is the first record of PLMVd and HSVd in Bosnia and Herzegovina.

DISEASE NOTE

FIRST RECORD OF THREE GRAPEVINE VIRUSES IN THE CHINESE PROVINCE OF SINKIANG

G. Pio Ribeiro¹, P. Saldarelli¹, N. Hong², B.Ch. Xiang³, X.-L. Zhang⁴, G.-P. Wang⁵ and G.P. Martelli¹

¹ Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi e Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy

² College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China

³ Shíbeí University, Shíbeí, Xinjiang, P.R. China

⁴ Xinjiang Inspection and Quarantine Bureau, Urumqi, Xinjiang, P.R. China

In the course of a survey for virus diseases of grapevine carried out in May 2004 in the Chinese Province of Sinkiang (Xinjiang), commercial vineyards were visited in the areas of Manasi and Shihézi (western wine grapes of recent introduction) and Turpan (table grapes introduced in the country over 1,000 years ago). Most of the vineyards were established with own-rooted plants that did not show obvious symptoms of diseases, except for a few with fanleaf at Manasi. A total of 56 samples were collected and total nucleic extracts were analyzed for the presence of viruses by using PCR first with degenerate primers for vitiviruses and foveaviruses (Saldarelli et al., 1997), and then with primers specific for *Grapevine virus A* (GVA), *Grapevine virus B* (GVB), *Grapevine rupestris stem pitting-associated virus* (GRSPaV) or for *Grapevine leafroll-associated viruses* 3 (GLRaV-3). GVA was identified in 18 samples, GVB in 24, GRSPaV in 25, and GLRaV-3 in 2. Interestingly, GVA, GVB and GRSPaV were detected also at Turpan, an area where the local varieties have been multiplied vegetatively for centuries in the absence of foreign germplasm (American roostocks and western *Vitis vinifera* cultivars). This finding can be taken as a further indication that these viruses are native to the Old World and have been spreading with *V. vinifera*, their only known natural host. Based on symptomatology, rugose wood has been recorded previously from the Chinese province of Liaoning, but the viruses associated with it were not identified.

Corresponding author: A. Myrta

Fax: +39.080.4606275

E-mail: myrta@iamb.it

Received 30 August 2004

Accepted 20 September 2004

Corresponding author: G.P. Martelli

Fax: +39.080.5442416

E-mail: martelli@agr.uniba.it

Received 3 September 2004

Accepted 20 September 2004