Grapevines can be infected by five different viroids, of which *Australian grapevine viroid* (AGVd) is the least studied. Here we report the use of RT-PCR for the detection of this viroid from infected grapevines in Tunisia. RT-PCR results were confirmed by cDNA sequencing. This is the first report of AGVd from the Mediterranean region. The data presented indicate a wider geographical distribution of this viroid than previously reported and record its occurrence in Africa. The molecular variability of AGVd from two different cultivars, Carignan and Syrah, was studied by restriction analyses and by cDNA sequencing. Sequence variability was not clustered in any specific domain or region of the genome.

**Key words:** Grapevine, Australian grapevine viroid, cloning and sequencing, molecular variability.

**INTRODUCTION**

Viroids are the smallest known plant pathogens, consisting solely of small circular single-stranded infective RNA molecules (Diener, 1991, 2001; Flores et al., 2000). Their size ranges from 246 nucleotides (nt) in *Avocado sunblotch viroid* (ASBVd) (Symons, 1981) to 399 nt in *Chrysanthemum chlorotic mottle viroid* (ChCMVd) (Navarro and Flores, 1997). Most viroids characterized so far are grouped in the *Pospiviroidae* family. They contain five structural domains (Keese and Symons, 1985): two terminal regions, left (TL) and right (TR), a pathogenic (P), a variable (V) and a central (C) domain with a central conserved region (CCR). Viroids lacking a CCR possess hammerhead self-cleavage ability and belong to the *Avsunviroidae* family (Flores et al., 2000).

Grapevine (*Vitis vinifera* L.), an important crop in the Mediterranean region, may be infected by five different viroids: *Hop stunt viroid* (HSVd), *Citrus exocortis viroid* (CEVd), the two *Grapevine yellow speckle viroids* (GYSVd-1 and GYSVd-2) and *Australian grapevine viroid* (AGVd) (Flores et al., 1985; Sano et al., 1985; García Arenal et al., 1987; Rezaian, 1990; Wan Chow Wah and Symons, 1997; Szychowski et al., 1998). These viroids belong to three different genera of the *Pospiviroidae*. GYSVd-1, GYSVd-2 and AGVd belong to the genus *Apscaviroid*, type species *Apple scar skin viroid* (ASSVd), whereas HSVd is the only member of the genus *Hostuviroid*. CEVd belongs to the genus *Pospiviroid*, type species *Potato spindle tuber viroid* (PSTVd). Of the five viroids infecting grapevine AGVd is the least studied. To date it has been recorded only from Australia (Rezaian, 1990) and California (Rezaian et al., 1992). We now report the occurrence of AGVd in the Mediterranean region and in Africa. AGVd was detected in two different cultivars, Carignan and Syrah. We have also characterized this viroid using cDNA restriction profiles. The characterization and phylogenetic analysis of three new AGVd sequence variants from two different cultivars revealed that there is no relationship between AGVd variants and the host from which they were derived.

**MATERIALS AND METHODS**

**Plant material.** Twenty-three samples of young leaves from the grapevine cultivars Syrah, Carignan, Cardinal, Muscat d’Italie (cv Italia) and Beldi were collected from a Tunisian vineyard in summer. As AGVd is not known to induce any symptom, the samples were collected without regard to symptom status.

**RNA extraction.** Two grams of young leaves were homogenized, and total RNA isolated by phenol extraction and adsorption onto cellulose as described by Flores et al. (1985). The resulting RNA samples were fractionated by lithium chloride precipitation, and the polysaccharides removed by methoxyethanol precipitation (Satub et al., 1995). The RNA content was determined by UV spectrophotometry and its quality assessed by electrophoresis in 1% agarose gels.

**RT-PCR amplification.** First-strand AGVd cDNA was synthesized using an anti-sense primer (5’-GTC-GACGACGAGTCGCCAGGTGAG-3’) and *Avian*...
myeloblastosis virus reverse transcriptase (RT) according to the manufacturer’s recommendations (Roche Diagnostics, Indianapolis, USA). The resulting cDNA was then amplified by polymerase chain reaction (PCR) using the same anti-sense primer coupled with a sense primer (5’-GTCGACGAAGGTCCCTCAGCAGAG-3’). These primers hybridize to the CCR and adjacent regions. To avoid PCR artefacts PWO DNA polymerase (Roche Diagnostics, Indianapolis, USA) was used, and other precautions, including control experiments, were performed in order to confirm the authenticity of the DNA products (Pelchat et al., 2000). The amplification consisted of thirty cycles (1 min at 94°C, 1 min at 52°C and 1 min at 72°C), after which the mixture was extracted with phenol/chloroform and 20 µl aliquots analysed on 2% agarose gels.

cDNA cloning. Gel slices containing the full-size AGVd cDNA were isolated, and the cDNA extracted, precipitated and washed with ethanol. An adenosine residue was then added to the 3’ ends of the PCR products using the Taq DNA polymerase so that the PCR-amplified fragments could be ligated in a ‘sticky end’ fashion to linearized pCR 2.1 vector (which possesses an extra thymidine residue at 5’ end) as recommended by the manufacturer (TA cloning kit, Invitrogen, San Diego, USA).

cDNA restriction analyses. Clones carrying an insert of the size expected for AGVd were identified by restriction analysis using EcoRI. Three positive clones were restricted using BamHI, DraI, NcoI, NdeI and XbaI. Digestion was carried out under the conditions described by the manufacturer (Gibco-BRL, Rockville, USA). The products were analysed by electrophoresis on 2% agarose gels.

cDNA sequencing. The clones analysed by restriction were then sequenced in both directions, using the M13 universal and reverse primers, by the dideoxynucleotide chain termination method (T7 DNA sequencing kit, United State Biochemical, Cleveland, USA). Two different nucleotide sequences were obtained from cv Carignan, and one from cv Syrah.

Phylogenetic analysis. Multiple alignments of AGVd sequences were obtained using ClustalW (Thompson et al., 1994). The alignments were corrected manually to maximize sequence homology. Phylogenetic analyses were performed using the neighbour-joining method (Saitou and Nei, 1987) using ClustalX.

RESULTS AND DISCUSSION

AGVd was detected in only six samples of the 23 analysed, and was found in cvs Carignan and Syrah. This is the first report of AGVd from the Mediterranean region. This may be because it was not looked for earlier. GYSVd-1, GYSVd-2 and HSVd have been identified in Italy (Minafra et al., 1990) and in Spain (Duran-Vila et al., 1990).

When using AGVd-specific primers, a band of ca 370 bp corresponding to the full length genome of AGVd was detected in RT-PCR amplicons from cvs Carignan and Syrah. RT-PCR can sometimes give false positives due to the presence of host RNAs with partial similarity to primer sequences. In order to demonstrate unequivocally the presence of AGVd in the samples that tested positive, the cDNAs obtained were cloned. Two clones obtained from cv Carignan and one clone from cv Syrah were further analysed for sequence variation using several restriction enzymes. Polymorphism was observed only with BamHI (Fig. 1 and data not shown), which gave two distinct restriction patterns. In the first, no band was obtained; this profile was observed in the clones from cv Syrah. In the second pattern, an additional band about 100 nt in size was observed, this pattern was obtained from clones of cv Carignan (Cari-1 and Cari-2) (Fig. 1). BamHI restriction analysis suggested the existence of polymorphism in the cDNA coming from different cultivars.

![Fig. 1. 2% agarose gel analyses of BamHI restriction products. Lanes 1, 3 and 5, clones of Syrah, Cari-1, and Cari-2, respectively, that were not submitted to restriction. Lanes 2, 4, and 6, the same clones submitted to restriction. Lane 7: 1 Kb DNA ladder.](image)

In order to test this hypothesis, to conclusively demonstrate AGVd infections in Tunisia, and study possible relationships between the viroid genomes and their hosts, the clones used in restriction analysis were sequenced.

The two variants from cv Carignan were 361 and 364 nt in size (Cari-1 and Cari-2, respectively), while the clone from cv Syrah was 368 nt. These new variants showed some differences in size when compared to the sequence (Pelchat et al., 2003) reported from Australia (369 nt). This latter sequence was isolated from a cucumber plant mechanically inoculated at the cotyledonal stage with a viroid preparation purified from infected grapevine leaves (Rezaian, 1990). One of the
main reasons for this procedure was the fact that vine tissue extracts contain high levels of phenolic compounds, polysaccharides and other complex substances known to have inhibitory effects on enzymes (Rezaian et al., 1992). So this is the first description of AGVd sequences isolated from their natural host.

Comparison between the known sequence variant isolated from cucumber and the sequence variant reported in this work shows modifications of various types including transition, transversion, insertion, rearrangement and deletion (Fig. 2). The number of polymorphic positions taking in account all the AGVd sequences variants is 27 out of 372 positions. So the variability is either 7.2% or 8.1% depending on whether the primer regions are considered or not. These point mutations were distributed throughout the molecules, with no clustering of the changes. We also noted that the G deletion at position 278 fell in the lower strand of the CCR. Mutation in the lower strand of central domain but not in the CCR has previously been reported from other members of the genus Apscaviroid (Ambros et al., 1995; Owens et al., 1999; Di Serio et al., 2002). Mutation in the lower and upper strand of Apscaviroid central domain has been reported only for CVd-III (Owens et al., 2000). It cannot be excluded that the mutation we detected in the CCR of AGVd could be an artefact. A conclusive proof that a variant containing the same mutation is viable can be obtained only by recovering several variants containing the same mutation and demonstrating the stability of such a mutation in the progeny of infectious in vitro transcripts of the mutated variants.

The most stable secondary structures, in terms of energy, were predicted for all new sequences at a folding temperature of 37°C using the program mfold Version 2.3, from http://mfold2.wustl.edu/mfold/ma/form1-2-3.cgi. All AGVd variants folded into a similar rod-like shape in which approximately 70% of the residues are base paired, suggesting that the sequence variations did not affect the most stable secondary structure. Overall, this secondary structure prediction of AGVd is similar to that reported previously (see Rezaian, 1990), with only minor and local differences. This strongly suggests that structural constraints exist to limit sequence heterogeneity of AGVd. The hypothesis of the existence of constraints to limit the heterogeneity of nucleotide sequences was recently postulated based on the characterization of many natural variants of Peach latent mosaic viroid (PLMVd) and Hsvd (Ambros et al., 1998; Pelchat et al., 2000; Amari et al., 2001).

When the first sequence of AGVd from cucumber was reported, a single deletion at position 55 was detected in a cDNA clone. The low frequency of sequence variation observed for AGVd was proposed to be the result of a filtering effect due to its passage through cucumber (Rezaian, 1990). Our results show that the AGVd sequence variability is higher in the natural than in the experimental host.

To study the relationship between the AGVd variant from grapevine (Cari-1, Cari-2 and Syrah), and from cucumber (Rezaian, 1990) and other viroids, we produced an alignment using CLUSTAL-X (Thompson et al., 1997) using these sequences and others of viroids either from the same genus, Apscaviroid (GYSVd.27, ASSVd.3, CVd-III.2 and CBLVd.2) or from a different genus, Pospiviroid (CEVd.16, PSTVd.1 and HSVd.1). We have also used a sequence variant of a viroid from a different family Assumiviroidae (PLMVd.1).

The phylogenetic tree (Fig. 3) derived by the neighbour-joining method from the alignment of the complete sequences reproduces the same distribution in families and genera obtained previously by Flores et al. (2000) and Elena et al. (2001). It also illustrates the relationship between the AGVd variant and other viroids. Grapevine viroids AGVd and GYSVd-1 form a single cluster suggesting that they share the same origin.

Some Apscaviroid species have been regarded as recombinant, sharing sequence homology not only with
REFERENCES


Navarro B., Flores R., 1997. Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self...

ACKNOWLEDGEMENTS

This work was supported by the Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie of Tunisia (Office de la Vigne et du Vin) for organizing the field visits and the reviewers for their detailed analysis and constructive suggestions.
cleaving viroids with hammerhead ribozymes. Proceeding of the National Academy of Sciences USA 94: 11262-11267.


Received 14 October 2002
Accepted 20 January 2003