DISEASE NOTE
IDENTIFICATION OF PEACH LATENT MOSAIC VIROID IN LEBANON
E. Choueiri1, N. Abou Ghanem-Sabanadzovic2, K. Khazzaka1, S. Sabanadzovic2, B. Di Terlizzi2, F. Jreijiri1 and V. Savino3

1Institut de Recherches Agronomiques Libanais, Tal Amara, Lebanon
2Istituto Agronomico Mediterraneo, Via Ceglie 9, I-70010 Valenzano (Bari), Italy
3Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Centro di Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, Via G. Amendola 165/A, I-70126 Bari, Italy

Symptoms resembling those caused by Peach latent mosaic viroid (PLMVd), family Asunviroideae, genus Pelamoviroid, i.e., delayed bud break, yellow mottling or blotching of the leaves, discoloration and deformation of the fruits, have been repeatedly observed in peach and nectarine plants in Lebanon (Jawhar et al., 1997), but the causal agent has not been ultimately identified. Samples collected from ten commercial orchards in North Lebanon, Mount Lebanon, and Bekaa Valley, were tested by molecular hybridization and RT-PCR for the presence of PLMVd using a SP6 RNA polymerase-generated full-length digoxigenin-labelled riboprobe and specific primers designed on an Italian PLMVd isolate (Shamloul et al., 1995). PLMVd was identified in 17 out of 50 tested samples belonging to both native (‘Chikhani’ and ‘Bab cock’) and imported varieties (‘Dixiered’ and ‘Springtime’). The presence of PLMVd represents an incumbent threat for the Lebanese peach industry as infected trees constitute dangerous inoculum sources.

DISEASE NOTE
TOMATO BUSHY STUNT VIRUS IN NICOTIANA GLAUCA IN GREECE
F. Grieco and C. Vovlas

Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Centro di Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, Via G. Amendola 165/A, I-70126 Bari, Italy

During the last years, a number of the widely spread weed Nicotiana glauca plants showing virus-like symptoms, were observed in different regions of Greece (Epyrus, Attica and Dodecanesos). From infected plants, showing chlorotic spots, deformation of the leaves and enations, a virus was consistently transmitted by sap inoculation to herbaceous hosts. The results of biological and serological assays as well as the outward aspect of virus particles from symptomatic leaves of artificially infected Nicotiana benthamiana, suggested that the virus could be an isolate of Tomato bushy stunt virus (TBSV; Genus Tombusvirus, Family Tombusviridae) (Russo et al., 1994). RNA extracted from purified virus preparations were subjected to RT-PCR using specific primers [F (+): 5’ TGACGCTCATGAGCCAGCATCC 3’; R (-): 5’ TCCTGATCCTCCATCCACCTTCAACGTTC 3’] designed on tombusviruses sequences from EMBL database. The amplification product (1368 nt) was cloned and sequenced (Acc. no. AJ312281). This sequence contained the complete coat protein (CP) gene and the amino acid sequence was 91% identical to the CP of TBSV cherry strain (Acc. no. M31019). TBSV is the cause of severe epidemics in several horticoltural crops (Luis-Arteaga et al., 1996). This is the first report of TBSV in N. glauca, which appears to be a new host for this virus.

Corresponding author: F. Grieco
Fax: +39.080.5442911
E-mail: csvsgs03@area.ba.cnr.it

Received 15 June 2001
Accepted 29 June 2001

Corresponding author: V. Savino
Fax: +39.080.5442911
E-mail: savino@agr.uniba.it

Received 27 February 2001
Accepted 6 March 2001
DISEASE NOTE
CHARACTERIZATION OF POPULATIONS OF PHYTOPHTHORA INFESTANS (MONT.) DE BARY IN MOROCCO USING AGGRESSIVENESS, MATING TYPE AND METALAXYL RESISTANCE
A. Hammi1, Y. Msatef1, A. Bennani2, A. El Ismaili3 and M.N. Serrhini4

1Faculté des Sciences Dhar El Mehrez, Fès., 2Faculté des Sciences Mouley Ismail, Meknès, 3Service de la Protection des Végétaux, Fès - DPVCTRF 1, 4Ecole Nationale d’agriculture, Département de Phytopathologie, Meknès, Marocco

Late blight of potato and tomato caused by Phytophthora infestans (Mont.) de Bary has become a serious problem for these crops during some growing seasons. It first appeared in Africa in 1941 (Sedigui et al., 1997). The population structure of this fungus is reported to have changed since 1980’s essentially the occurrence of the A2 mating type outside Mexico (Drenth et al., 1993). Also the new populations of P. infestans are more aggressive and genetically diverse from the old populations (Fry et al., 1992; Peters et al., 1999). Until 1997, only A1 mating type of P. infestans had been detected in Morocco (El Ismaili, 1994; Sedigui et al., 1997). In this study 99 isolates from different tissues of potato (92 isolates) and tomato (7 isolates): leaves, stems and tubers, originating from several regions of Morocco during 1997-2000, were characterized by using aggressiveness, mating type and metalaxyl resistance. These isolates were tested for aggressiveness on detached leaflets and tubers of four potato cultivars (‘Desirée’, ‘Nicola’, ‘Spunta’ and ‘Kondor’) which are the most cultivated in Morocco and on detached leaves of ‘Daniela tomato’ cultivar. The mating type of isolates was determined by pairing them with English tester isolates of mating types A1 and A2. Resistance to metalaxyl of the isolates was tested in vitro on pea agar amended with different concentrations of metalaxyl (0, 0.1, 1, 10 and 100 µg ml⁻¹) and in vivo by floating potato leaf disks inoculated with P. infestans on metalaxyl solutions (0, 0.1, 1, 10, 100, 1000 µg ml⁻¹). This study has revealed that all the isolates from potato were more aggressive on the potato and tomato cultivars tested, but the isolates from tomato were more aggressive only on ‘Daniela tomato’ cultivar. This may explain the host specificity of the isolates. All the seven tomato isolates were of A2 mating type and metalaxyl sensitive. Pairing and metalaxyl resistance tests for the potato isolates revealed a distribution as follows: 28 isolates were of A1 mating type and metalaxyl sensitive, 9 isolates were of A2 and metalaxyl sensitive, 13 isolates were of A1 and metalaxyl-intermediate, 33 isolates were of A2 and metalaxyl-intermediate, 3 isolates were of A1 and metalaxyl resistant and 6 isolates were of A2 and metalaxyl tolerant. These results confirm the presence of the isolates of A2 mating type with a high degree of metalaxyl resistance which can exceed 100 µg ml⁻¹. In spite of the limited number of samples of isolates tested which are certainly not representative of the whole population present in Morocco, this study suggests that P. infestans populations in Morocco are more heterogeneous than thought, at least in terms of both mating type and metalaxyl resistance.

REFERENCES

FIRST RECORD OF PEACH LATENT MOSAIC VIROID AND HOP STUNT VIROID IN SYRIA

F. Ismaeil1,2, N. Abou Ghanem-Sabanadzovic1, A. Myrta1, B. Di Terlizzi1 and V. Savino3

1Istituto Agronomico Mediterraneo, Via Ceglie 9, I-70010 Valenzano (Bari), Italy
2Ministry of Agriculture and Agrarian Reform, Hijaz Square, Damascus, Syria
3Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Centro di Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, Via G. Amendola 165/A, I-70126 Bari, Italy

During a survey for assessing the sanitary status of stone fruits in Syria, 53 samples were collected from 15 commercial peach orchards in the Southern and Central regions of the country and 24 samples from a varietal apricot collection at Douma (southern Syria). All samples were tested for the presence of Peach latent mosaic viroid (PLMVd) and Hop stunt viroid (HSVd). Total nucleic acids were extracted from about 500 mg leaf tissue of each sample according to Astruc et al. (1996), were denatured with 100 mM NaOH containing 5 mM EDTA, spotted onto Hybond N + nylon membranes and hybridized at 55 °C with viroid-specific SP6 and T7 RNA polymerase-generated, full-length, digoxigenin-labelled riboprobes (Shamloul et al., 1995). PLMVd was present only in peach and HSVd only in apricot, the relative incidence being 40.0% (PLMVd) and 62.5% (HSVd). Infected trees belonged to both native and foreign varieties. Both viroids were recently reported from Jordan and PLMVd from Lebanon. Their presence represents a serious threat to the stone fruit tree industry of the region.

Corresponding author: A. Myrta
Fax: +39.080.4606206
E-mail: myrta@ianb.it

Received 20 March 2001
Accepted 25 September 2001

NECROSIS OF WATERMELON CAUSED BY WATERMELON MOSAIC VIRUS

A. Crescenzi1, A. Fanigliulo1, S. Comes1, V. Masenga2, R. Pacella1 and P. Piazzolla1

1Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy
2Istituto di Fitovirologia Applicata, CNR, Strade delle Cacce 73, I-10135 Torino, Italy

A serious disease of watermelon grafted on squash characterized by mosaic, necrotic spots and streaks of leaves and stems, necrotic depressions of the fruit surface and abnormally pale colouring of the fruit flesh, was observed in Basilicata (southern Italy). A virus with filamentous particles ca 750 nm long was consistently observed in leaf dips from naturally infected watermelon plants from 20 different plots. This virus was transmitted mechanically and reproduced the necrotic syndrome in inoculated watermelon seedlings. It reacted positively only with an antiserum to Watermelon mosaic virus (WMV) in ELISA and decoration tests, when assayed with antisera to different potyviruses. The viral 3’ non-coding region was amplified by RT-PCR, cloned and sequenced, showing ca 94% identity with the comparable region of other WMV isolates, thus suggesting that the isolate is a new WMV variant (Frenkel et al., 1989), we denote WMV-wm. Mosaic and deformation of the leaves are commonly associated with WMV or Cucumber mosaic virus (CMV) in single or mixed infection to watermelon in southern Italy. Necrotic symptoms induced by WMV have not been previously reported in naturally infected watermelon plants.

Corresponding author: A. Crescenzi
Fax: +39.080.205503
E-mail: crescenzi@unibas.it

Received 20 March 2001
Accepted 25 September 2001