DISEASE NOTE

FIRST RECORD OF POME FRUIT VIRUSES IN SYRIA

K. Al-Jebr, F. Ismaeil, M.J. Mando, E. Al-Saadoun and S. Al-Chaabi

General Commission for Scientific Agricultural Research (GCSAR), Douma, P.O. Box 113, Damascus, Syria

A survey was conducted in Syria to evaluate the sanitary status of pome fruit trees. General symptoms of virus diseases were observed: i.e. chlorotic ring spots on pear leaves, chlorotic to green pale areas on apple leaves. Some trees showed symptoms of malformation and size reduction of leaves with chlorotic line patterns. Leaf samples from 754 apple, 44 pear or 14 quince plants were collected during the spring and early summer of 2003 and 2004 from the main cultivation areas of pome fruits in Syria in the following governorates: Damascus, Al-Qunaitara, Al-Swida, Homs, Hama, and Latakia. All samples were tested by DAS-ELISA (Clark and Adams, 1977) for Apple mosaic virus (ApMV), Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) using commercial kits by Bioreba (Reinach, Switzerland). ACLSV was found in 186 apple samples (24.7% infection); ASGV was found in 24 apple samples (3.2% infection), mainly from the coastal region (Latakia). ApMV was found in only 2 apple samples (0.3% infection). The three viruses were found only in apple. Pear and quince trees were apparently not infected with any of the tested viruses. This is the first report of pome fruit viruses in Syria.

STEM ROT OF TRACHELLIUM CAERULEUM AND CRASPEDIA GLOBOSA CAUSED BY SCLEROTINIA SCLEROTIORUM IN ARGENTINA

S.M. Wolcan1,2 and P.J. Grego2

1 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires.
2 CIDEFI, Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, UNLP 60 y 119, 1900 La Plata, Buenos Aires, Argentina

Trachelium caeruleum (Fam. Campanulaceae; “throat-wort”, “traquelium”) and Craspedia globosa (Fam. Asteraceae; “Billy Buttons”, “drumsticks”, “craspedia”) are two relatively new ornamental crops cultivated as cut flowers in the outskirts of La Plata (Buenos Aires Province). They can be used in both fresh and dry arrangements, and the plants are also used in landscapes. During spring 2004, plants growing in plots in commercial greenhouses showed sudden wilt and stem rot symptoms, more often in the second half of growth. Initial symptoms included black stem necrosis and grey or brown discoloration of leaves. As stem necrosis progressed, it appears a white mildew like fluff on or in the stem in which black and irregular sclerotia were developed. Infected plants wilted and died, and the losses were more important when the plants density and the humidity were high. The isolations obtained from sclerotia on PDA, produced cultures with mycelium and sclerotia characteristic of Sclerotinia sclerotiorum (Lib.) de Bary. For pathogenicity tests cross inoculation were conducted. Inoculum consisted in rice kernels infested with mycelium of isolates from traquelium and craspedia separately. Five g of inoculum were mixed with the upper soil level around the stems of potted mature plants of both ornamentals. For each ornamental, ten plants were inoculated with each Sclerotinia isolate and another ten which received sterile kernels served as controls. The plants were covered with plastic bags during 48 h and were kept at 18-20°C. All inoculated plants showed wilting after 8 to 12 days while controls remained healthy. S. sclerotiorum was recovered only from inoculated plants. Previous reports of these ornamentals as hosts of this pathogen were not found. This is the first report of S. sclerotiorum on T. caeruleum and C. globosa in Argentina.

Corresponding author: F. Ismaeil
Fax: +963.11.57386282
E-mail: faizismail@mail.sy

Received 31 March 2005
Accepted 13 April 2005

Corresponding author: S.M. Wolcan
Fax: +54.221.4252346
E-mail: swolcan@speedy.com.ar

Received 31 March 2005
Accepted 13 April 2005
NEW RECORD OF ACIDOVARORAX AVENAE SUBSP. CATTLEYAE ON ORCHID IN ITALY

M. Scortichini1, D. D’Ascenzo2 and M.P. Rossi1

1 C.R.A. - Istituto Sperimentale per la Frutticoltura, Via di Fioranello, 52, I-00040 Ciampino aeroporto, Roma, Italy
2 Regione Abruzzo, Servizio Fitosanitario Regionale, Via Nazionale, 38, I-65012 Villanova di Cepagatti, Pescara, Italy

Pot-grown plants of orchid (Phalaenopsis hybrid) cv Alice Girl with leaf spot symptoms were observed in a commercial glasshouse near Pescara (central Italy). Leaves bore circular-elliptical spots, sometimes with a water-soaked appearance, that turned blackish forming cavities in the parenchyma. Some leaves died. Tissue from lesion margins was ground in a mortar containing sterile saline, 0.1 ml aliquots of serial ten-fold dilutions were plated on nutrient agar and incubated at 25-27°C for three days. The resulting cream-coloured colonies were analysed in biochemical and pathogenicity tests and by SDS-PAGE of whole-cell protein extracts. All isolates accumulated poly-β-hydroxybutyrate, did not produce fluorescent pigments on medium B of King et al. (1954), hydrolysed starch, utilised L-arabinose, D-galactose and ethanoalamine as carbon source and caused a hypersensitivity reaction in tobacco cv White Burley. In addition, they showed the same protein profile as a reference strain (PD3516, Wageningen) of Acidovorax avenae subsp. cattleyae (Pavarino Willems et al.).

Pathogenicity tests were made according to Stovold et al. (2001). Phalaenopsis plants were covered with plastic bags 12 h before and for 24 h after inoculation. Leaves were wounded with a sterile syringe and inoculated by wiping with a cotton wool swab impregnated with the bacterial suspension (1-2·107 cfu ml-1). All isolates tested reproduced the original symptoms. Re-isolations yielded the same colony type as in the primary isolation. We conclude that the causative agent of the disease was A. avenae subsp. cattleyae. To our knowledge this is the first record of this disease of Phalaenopsis hybrid in Italy since its discovery by Pavarino in 1911. Other hosts of this pathogen are Cattleya, Cypripedium, Dendrobium, and Ornithobalum.

ACIDOVARORAX AVENAE

DISEASE NOTE

LEAF BLIGHT AND STEM DIEBACK ON HYPERICUM PERFORATUM IN TURKEY

H.M. Aksoy1* and C. Çırak2

1 Faculty of Agriculture, Department of Plant Protection, University of Ondokuz Mayıs, 55139 Kurupelit, Samsun, Turkey
2 Faculty of Agriculture, Department of Agronomy, University of Ondokuz Mayıs, 55139 Kurupelit, Samsun, Turkey

Hypericum perforatum L. is an herbaceous perennial plant that has received considerable interest worldwide. It is commonly known as St. John’s wort and use of crude extract of this plant as an antidepressant is very popular today (Biffignandi and Bilia, 2000).

We observed the disease symptoms with yellowing leaves and stem dieback from H. perforatum plants growing wild in campus area of Ondokuz Mayıs University, Samsun, in 2004. The fungus was isolated from surface-disinfested tissue on potato dextrose agar (PDA) in Petri plates. The plates were incubated at 24-25°C under 16 h of fluorescent light and 8 h darkness for 2 to 3 days. Mycelial tips from edge of the growing colony were transferred onto PDA in Petri plates and the plates were incubated at 24-25°C for one week. Conidial suspension was used to inoculate 3-month-old plants. Control plants were treated with only sterile-distilled water. The pots were incubated 24-25°C, 90% humidity with 16 h light: 8 h dark cycle. The treatment was set up according to 3 replications and repeated 2 times concurrently. Beginning the 5th day after inoculation, inoculated plants exhibited leaf spots similar to those originally observed followed by stem dieback. Identification of Diploceras hypericinum (Ces.) Höhn was based on the morphology of conidia on light microscope. Mycelia of D. hypericinum were whitish, conidiophores short and simple, conidia cylindrical, a little curved, 3 septate with two shoots out of ends 15.4x3.5 µm (Barnett and Hunter, 1998). This is the first report of D. hypericinum causing leaf blight and stem dieback of St. John’s-wort in Turkey.

Corresponding author: H.M. Aksoy
Fax: +90.362.4576034
E-mail: hmaksoy@omu.edu.tr

Received 25 July 2005
Accepted 20 September 2005
DISEASE NOTE

FIRST REPORT OF **PHIALOPHORA** CAUSING LEAF AND STEM BLIGHT ON COMMON GARDEN PETUNIA

G. Polizzi¹ and A. Vitale¹

¹ Dipartimento di Scienze e Tecnologie Fitosanitarie (DiSTeF) - Patologia Vegetale, Università degli Studi di Catania, Via S. Sofia 100, 95123 Catania, Italy

In spring 2002 and subsequently in 2003 numerous petunias (*Petunia x hybrida* Hort. Vilm.-Andr.), cv Lime and Mini Purple, exhibited a new leaf and stem disease in a greenhouse in eastern Sicily. Tiny and black leaf spots without specific arrangement surrounded by a yellow strip (“green islands”) were the main symptoms observed. Pin point lesions involving also stems often caused plant death. Isolations from symptomatic tissues consistently yielded on PDA and PCA colonies, white to buff at first, becoming buff-greenish glaucous above and olivaceus gray. The fungus was identified by conidiophores, conidia, cell phialides (with collarettes) morphology as genus **Phialophora** (Ellis, 1993). Only a tentative identification as **Phialophora fastigiata** (Lagerberg & Melin) Conant (IMI 389703) was performed by CABI Bioscience UK Centre as the conidia and conidigenous cells are somewhat smaller than expected. Pathogenicity tests were performed on 6 young plants of cultivars ‘Mini Purple’ and ‘Lime’ inoculated with a conidial suspension (10⁵ conidia ml⁻¹) and incubated in moist chamber at 25±2°C for 72 hours. After this period all plants inoculated showed typical lesions on leaves, petals, calyx and stems and pathogen was always reisolated from affected plants.

This is the first report of **Phialophora** sp. causing leaf spot and stem lesions on common garden petunia in the world.

Corresponding author: G. Polizzi
Fax: +39.095.7147283
E-mail: gpolizzi@unict.it

Received 25 July 2005
Accepted 1 September 2005

DISEASE NOTE

FIRST RECORD OF **COLLETOTRICHUM Coccoides** ON POTATO IN MALTA

A. Porta-Puglia and D. Mifsud

Ministry for Rural Affairs and the Environment, Department of Plant Health, Agricultural Research & Development Centre, Ghammier, Marsa CMR 01, Malta

In April 2005 black dot symptoms were observed in a field at Qrendi, Malta, on plants of potato (*Solanum tuberosum* L.) cv Derby at tuber maturation growth stage. Affected stems appeared prematurely wilted, and abundant sclerotia were present on their base and on the roots. *Colletotrichum coccodes* (Wallr.) Hughes (Porta-Puglia, 1986) was constantly isolated from crowns and roots. Colonies of one isolate, grown on potato dextrose agar (PDA), were suspended by a blender in sterile tap water (concentration: 2.1·10⁶ CFU ml⁻¹ on PDA). Six potato tubers (‘Derby’, at incipient germination) and the roots of 6 tomato seedlings (‘Thomas’, growth stage: 5 leaves) were soaked into the fungal suspension for 10 min and successively transplanted in 16 cm diameter plastic pots containing a mixture (1:1:1 w/w/w) of soil, sand and peat. Twenty-five ml of fungal suspension were distributed on the soil in each pot after planting. Control plants (6 per host) were treated in the same way with sterile tap water. The plants were kept under glasshouse conditions (22±5ºC) and regularly watered. The inoculated plants showed growth reduction, yellowing and wilting. When pulled up 2 months after inoculation root and crown rot were present on all of them. Wilting, crown lesions and growth reduction were more severe on tomato. Typical black dots (sclerotia) were present on the diseased tissues of both hosts. *C. coccodes* was re-isolated from roots, crowns and stem bases of all the inoculated plants previously washed and surface disinfested with sodium hypochlorite (2% active Cl, 5 min treatment). No symptoms were present on control plants and attempts to isolate the pathogen from them failed. This is the first record of *C. coccodes* on potato in Malta.

Corresponding author: A. Porta-Puglia
Fax: +356.25.904211
E-mail: angelo.porta-puglia@gov.mt

Received 1 September 2005
Accepted 20 September 2005
DISEASE NOTE

FIRST REPORT OF THREE FILAMENTOUS VIRUSES FROM CHERRY IN SERBIA

B. Mandic¹, S. Matic², W. Jelkmann¹, A. Myrta¹

¹ Istituto Agronomico Mediterraneo, Via Ceglie 9, 70010 Valenzano (BA), Italy
² Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi e Istituto di Virologia Vegetale, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy

For assessing the sanitary status of stone fruit tree collections from Serbia, 86 sweet cherry and 44 sour cherry cultivars were indexed in Prunus serrulata cv Kwanzan. After 2-3 months in a controlled environment greenhouse, leaf deformation and epinasty, suggestive of infections by Cherry green ring mottle virus (CGRMV) were induced by eight (6 sweet and 2 sour) accesses and a quick decline was induced by 37 other sources. Inoculation with the rest of the cultivars did not elicit any visible reactions. Total nucleic acids were extracted as described by Foissac et al. (2001) from 44 cultivars, selected among those inducing either epinasty (8), or quick decline (16), or no symptoms (20) in the indicator. RT-PCR was done using the following sets of primers: (i) GRM8316 and GRM7950 that amplify a 366 bp DNA fragment from CGRMV; (ii) NEG1U and NEG1L that amplify a 400 bp DNA fragment from Cherry necrotic rustv mottle virus (CNRMV); (iii) ERMUP and ERLO that amplify a 341 bp DNA fragment from a virus associated with European rustv mottle disease (ERM) (Rott and Jelkmann, 2001). Sixteen of the 44 tested accesses proved to be infected by at least one of the above viruses, four by one, ten by two, and two by all three viruses. The most frequent combination was CGRMV+CNRMV. RT-PCR showed that seven of eight cultivars that indexed positive in P. serrulata by inducing deformation and epinasty were infected CGRMV, which indicates a high level of reliability for woody indexing for this virus. CNRMV and ERM virus were not associated with any particular symptom in Kwanzan. This is the first report of CGRMV, CNRMV and the new elongated virus associated with ERM in Serbia.

Corresponding author: A. Myrta
Fax: +39.080. 4606275
E-mail: myrta@iamb.it
Receiced 6 September 2005
Accepted 26 September 2005

DISEASE NOTE

FIRST REPORT OF ALMOND LEAF SCORCH IN TURKEY

M.E. Güldür¹, B.K. Çağlar, M.A. Castellano³, L. Ünlü², S. Güran¹, M.A. Yılmaz² and G.P. Martelli³

¹ Department of Plant Protection, Harran University, Sanlıurfa, Turkey
² Department of Plant Protection, Çukurova University, Adana, Turkey
³ Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi e Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy

In early June 2005, almond trees (Prunus amygdalus L.) with chlorosis of the tips and margins of the leaves, necrosis of the yellow areas, and rolling of the blades were observed in several orchards of Sanlıurfa (southern Turkey). Diseased plants had a scattered distribution. The symptoms observed resembled very much those of almond leaf scorch (Purcell, 2002) a disorder induced by the xylem-limited bacterium Xylella fastidiosa (Wells et al., 1987). Symptomatic leaf samples were therefore tested by DAS-ELISA for the presence of X. fastidiosa and of a few common Prunus viruses, i.e. Prunus necrotic ring spot virus (PNRSV), Prunus dwarf virus (PDV), and Plum pox virus (PPV), using commercial kits (Loewe Phytodiagnostica Biochimica, Germany). ELISA was done following the directions supplied with the kit, dispensing in each well 200 ml of extracts from leaf petioles. Negative controls (symptomless trees) were included. Of 27 symptomatic samples from seven different almond orchards, 23 gave a positive response to X. fastidiosa but none reacted with antisera to PNRSV, PDV and PPV. When tests were repeated from other diseased trees at the end of July, 12 of 30 samples were again ELISA-positive. When fragments from petioles and main veins of symptomatic leaves collected in July from ELISA-positive trees were processed for thin sectioning and observed under the electron microscope, bacterial cells ca. 2x0.3 mm in size were profusely present in xylem elements. No bacteria were seen in symptomless controls. These data seem to substantiate the likelihood that X. fastidiosa is associated with scorchd almond trees in southern Turkey. The only extant record of X. fastidiosa in the Mediterranean area is from Kosovo, where the bacterium was found in grapevines (Berisha et al., 1998).

Corresponding author: M. Güldür
Fax: +90.414.247.4480
E-mail: guldur@harran.edu
Received 20 August 2005
Accepted 26 September 2005