

Trichoderma species associated with green mould disease of Pleurotus ostreatus and their sensitivity to prochloraz

G. Innocenti, M. Montanari, H. Righini and R. Roberti*

Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin, 46, Bologna, Italy

Green mould disease causes serious economic losses in *Pleurotus ostreatus* crops worldwide, including in Italy, where prochloraz is the only chemical fungicide allowed to control the disease. The effectiveness of the doses 0.01, 0.05, 0.25 and 1.25 μL L⁻¹ (field dose) of prochloraz (Sponix Flow, 450 g L⁻¹), against colony growth rate and spore germination of *Trichoderma pleuroti*, *T. pleuroticola* and *T. guizhouense* strains on wheat straw extract agar plates were evaluated. Complete inhibition of *Trichoderma pleuroti* and *T. pleuroticola* growth was shown by the field dose of prochloraz, and also by the 0.25 μL L⁻¹ dose for *T. pleuroti*. Complete inhibition of spore germination occurred for all *Trichoderma* strains at field dose, and at 0.25 μL L⁻¹ for *T. pleuroti* strains. In *in vivo* assays, the effect of prochloraz doses 0.05, 0.25 and 1.25 μL L⁻¹ on colonization of straw substrate by *T. pleuroti*, *T. pleuroticola* and *T. guizhouense* inoculated at two spore densities (10² and 10⁵ spores mL⁻¹) immediately after *P. ostreatus* spawn was studied. *Trichoderma pleuroti* and *T. pleuroticola* were both responsible for green mould disease, whereas *T. guizhouense* was not pathogenic. *Trichoderma pleuroti* was more aggressive than *T. pleuroticola*. Prochloraz was effective against *T. pleuroti* at the field dose, and against *T. pleuroticola* at 0.25 and 1.25 μL L⁻¹. The study on *Trichoderma* × *Pleurotus* interaction type showed that *Trichoderma* species were active against the mycelial growth of *P. ostreatus* by competition for space and nutrients, and neither hyphal interaction nor effect by volatile or nonvolatile metabolites occurred.

Keywords: green mould disease, oyster mushroom, prochloraz, Trichoderma spp.

Introduction

Pleurotus ostreatus, commonly known as oyster mushroom, is one of the most commercially important edible mushrooms worldwide. Italy, Hungary and Poland are the main producers in Europe (Błaszczyk et al., 2013). Many biotic diseases may cause significant yield losses in P. ostreatus farms. The green mould disease caused by Trichoderma species is one of the most serious problems for the P. ostreatus crop. Typical symptoms of the disease are green sporulation areas on the surface of the cultivation substrate that is exposed to green mould infection, mostly during spawn run. Massive attacks of the disease have been reported in South Korea, where the first significant losses were observed (Park et al., 2006), Sri Lanka (Jayalal & Adikaram, 2007), Hungary (Hatvani et al., 2007), Croatia (Hatvani et al., 2012), Romania (Kredics et al., 2006), Spain (Gea, 2009) and Poland (Sobieralski et al., 2012). The disease has also been reported in North America (Sharma & Vijay, 1996). Serious cases of green mould have been detected in P. ostreatus farms in Italy (Woo et al., 2004, 2009;

Published online 2 November 2018

Alfonzo et al., 2008; Innocenti & Montanari, 2014). Studies by Park et al. (2006) and Komon-Zelazowska et al. (2007) showed that two species of Trichoderma, T. pleuroti (previously T. pleurotum) and T. pleuroticola, are the predominant causal agents of Pleurotus green mould disease. They both belong to the Harzianum clade of HypocrealTrichoderma, which also includes T. aggressivum, responsible for green mould disease of Agaricus bisporus (Hatvani et al., 2007; Komon-Zelazowska et al., 2007). Morphological studies have revealed that T. pleuroticola shows pachybasidium-like properties, characteristic of the Harzianum clade, while T. pleuroti possesses Gliocladium-like conidiophore morphology (Komon-Zelazowska et al., 2007). Trichoderma pleuroti has only been found in the area of P. ostreatus cultivation (Kredics et al., 2009); in contrast, T. pleuroticola has been found in soil, plant debris or decaying wood in the USA, Canada, New Zealand, Europe and India (Hatvani, 2008), and on the basidioma surface of wild P. ostreatus (Kredics et al., 2009). This suggests that the two species may occupy different ecological and trophic niches in nature (Hatvani, 2008). Trichoderma pleuroti and T. pleuroticola usually co-occur in the cultivation substrate, with no clear dominance of one or other species (Hatvani, 2008), although the latter was found to be more aggressive (Hatvani, 2008). The role of T. harzianum in the P. ostreatus green mould disease is

^{*}E-mail: roberta.roberti@unibo.it

still not clear. Woo et al. (2009) identified the majority of isolates pathogenic to P. ostreatus from Italian mushroom farms as T. pleuroticola and T. harzianum and less commonly as T. pleuroti. Hatvani et al. (2012) identified T. pleuroti and T. pleuroticola as causal agents of the green mould disease from samples obtained from Croatian farms. In the study of Innocenti & Montanari (2014), T. pleuroti and T. pleuroticola were isolated from areas of the cultivation substrate with symptoms, whereas T. harzianum was isolated only from symptomless areas.

Disease control is commonly based on the application of fungicides. Because studies on fungicide efficacy on cultivated mushrooms by agrochemical companies are rare, only few fungicides have been officially recommended. Currently only prochloraz is allowed for use in mushroom farms in Italy. The few studies carried out on the sensitivity of *T. harzianum*, *T. pleuroti* and *T. pleuroticola* to fungicides, specifically to prochloraz, showed that *T. pleuroti* and *T. pleuroticola* were more sensitive than *T. harzianum* (Hatvani *et al.*, 2012; Innocenti & Montanari, 2014).

The objectives of the present work were to study: (i) the role of T. harzianum in green mould disease; (ii) the sensitivity to prochloraz of Trichoderma species pathogenic to P. ostreatus on wheat straw agarized medium; (iii) the effect of prochloraz on green mould disease under conditions similar to those of mushroom farms; and (iv) the $Trichoderma \times P$. ostreatus interaction type.

Materials and methods

Trichoderma strains: origin and species identification

Trichoderma strains were isolated from green mould-affected and symptomless samples of wheat straw substrate of P. ostreatus from a mushroom farm located in Emilia Romagna, Italy. Samples were homogenized with a blender. About 10 g (fresh weight) of each homogenized sample was placed in a 300 mL flask containing 90 mL extraction solution (0.1% sodium pyrophosphate), shaken for 10 min at 360 rpm and filtered through sterile cheesecloth. Samples were then diluted in a Ringer's solution and 100 µL aliquots plated on Petri dishes containing Trichoderma semiselective medium (TSM; Smith et al., 1990). Dilutions and plates were repeated twice for each sample. After 3 days of incubation at 25 °C, Trichoderma colonies were transferred to malt extract agar (MEA; Difco) plates at 22 °C until sporulation occurred. Trichoderma spores were then suspended and diluted in sterile distilled water, Tween 20 added, and monosporic colonies were obtained. DNA was extracted from the mycelium by using the NucleoSpin Plant II kit (Macherey-Nagel) following the manufacturer's protocol. A multiplex PCR (SimpliAmp thermal cycler; Applied Biosystems) assay with tef1 (translation elongation factor 1-α) sequencebased primers FPforw1, FPrev1 and PSrev1 was carried out under the conditions described by Kredics et al. (2009), to assess species belonging to the T. pleuroticola/T. pleuroti complex. Amplification of the tef1 gene fragment was performed as follows: 1 cycle at 94 °C for 5 min; 35 cycles at 94 °C for 45 s, 63 °C for 45 s, and 72 °C for 1 min; and a final elongation at 72 °C for 10 min (Hatvani et al., 2007, modified). Amplification products were separated by electrophoresis on 1.5% agarose gel in $1 \times$ TAE buffer at 100 V for about 45 min, stained with ethidium bromide and visualized under UV light.

For Trichoderma strains that were not identified as T. pleuroti/T. pleuroticola, the internal transcribed spacer (ITS) region of ribosomal DNA was amplified by PCR using ITS1f and ITS4 as fungal primers (White et al., 1990; Gardes & Bruns, 1993). Sequencing of amplified ITS was performed by Macrogen Inc. (South Korea). Taxonomic identifications were performed comparing retrieved sequences with those available in the online databases provided by the National Centre for Biotechnology Information (NCBI) using the BLAST search program (Altschul et al., 1997). For T. harzianum strains, a new characterization was carried out by sequencing the tef1 fragment (Bisset et al., 2015; Chaverri et al., 2015) using the primers TEF1LLErev (Jaklitsch et al., 2005) and EF1-728 F (Carbone & Kohn, 1999). All strains were maintained in potato dextrose broth (PDB; Difco) with added 15% glycerol at -80 °C, and deposited in the culture collection of the Department of Agricultural and Food Sciences, University of Bologna under AFS codes.

The commercial P. ostreatus 'Spoppo' (Sylvan) widely cultivated in Italian farms was used.

Effect of prochloraz on *Trichoderma* colony growth and spore germination

The experiment was conducted on wheat straw extract agar (WSEA; Rajendran et al., 1991) amended with the fungicide prochloraz (Sponix Flow, 450 g L^{-1} ; Adama Makhteshim Ltd) at 0.01, 0.05, 0.25, 1.25 μ L L^{-1} doses, poured into 9 cm plates (Da Silva & Neves, 2005). The concentration range, dilution factor 1:5, was chosen to include a maximum dose of $1.25~\mu L~L^{-1}$, which is the field dose usually applied in Italian mushroom farms. The fungicide was added to the medium after autoclaving at 121 °C, when the medium had cooled to approximately 40 °C. One 0.5 cm diameter MEA plug from an actively growing colony of each fungus was inoculated in the centre of each plate. Untreated WSEA plates inoculated with each fungus acted as controls. Three plates (replicates) were used for each dose, and for the control. Plates were incubated at 25 °C in the dark in a completely randomized experimental design. Colony diameters were measured along two perpendicular axes 2, 4 and 6 days after inoculation. Daily radial growth was then calculated (Reeslev & Kjoller, 1995). The effect of 0.01, 0.05, 0.25, $1.25~\mu L~L^{-1}$ prochloraz doses was also tested on P. ostreatus 'Spoppo' (PoSp) colony growth in WSEA plates.

In spore germination studies, conidia were removed from a 7-day-old colony of each *Trichoderma* isolate growing on MEA, by adding sterile water with Tween 80 to obtain a final concentration of 10³ spores mL⁻¹. An aliquot of 0.1 mL was spread on the surface of each 9 cm diameter WSEA plate unamended (control) or amended with the fungicide as reported above. The percentage of spore germination was estimated 12 h after inoculation by using an Eclipse TE2000-E microscope (Nikon) at ×600 magnification. Spores were considered germinated when the germ tube length was equal to or greater than the spore width. Four replicates for each prochloraz dose and control were performed.

In vivo assay

In this assay, PoSp, and *Trichoderma* strains Tg 501, Tpa 432 and Tpi 492 were used. *Pleurotus ostreatus* commercial spawn consisted of sterile millet seeds colonized by the mycelium of the

G. Innocenti et al.

fungus. Each Trichoderma strain was cultured on MEA plates at 25 °C for 4 days in the dark, then under natural light, to obtain abundant sporulation. The growing substrate was prepared using a technique similar to that used in mushroom farms. Chopped wheat straw (2-5 cm) was steam pasteurized at 90 °C for 1 h (Sobieralski et al., 2012) and inoculated with the PoSp spawn (2% v/w). For each sample, 100 g of substrate + PoSp was then distributed in a perforated transparent plastic food container (15 \times 10 \times 8 cm), and prochloraz was applied by adding 20 mL water solution of the fungicide corresponding to 0.05, 0.25 and 1.25 μL L^{-1} doses. Finally, 3 mL of water spore suspension of each Trichoderma strain was added. Two densities of Trichoderma (10² and 10⁵ spores L⁻¹) were used separately to simulate low and high level attacks by the pathogen. Each container was then wrapped in a plastic bag closed by a cotton plug. Controls consisted of containers with PoSp + Trichoderma, with 20 mL of water. The prochloraz treatment time used was comparable to that on the farms, where the fungicide is applied to the substrate at spawn. Three replicates were performed for each treatment for a total of 72 containers that were located in a growth chamber following a complete randomized design at 23-25 °C and 80% relative humidity. Four weeks later, during the spawn run phase, the colonization of substrate by Trichoderma was visually assessed for each container using a five-point scale, where: 0, no colonization; 1, sporadic growth, few small green areas; 2, light growth, <20% of substrate colonized by green mould; 3, medium growth, 20-50% of colonized substrate; 4, heavy growth, >50% colonization by green mould. The colonization rate (index) was then calculated as the mean of the values of the replicates. At the end of the experiment, T. pleuroticola and T. pleuroti were reisolated from the substrate and identified as previously described.

Interaction between Trichoderma and P. ostreatus

To verify the mechanism of interaction between Trichoderma spp. and PoSp, dual culture and volatile and nonvolatile metabolite techniques were used (Dennis & Webster, 1971a,b; Innocenti et al., 2015). In the dual culture assay, 5 mm diameter MEA plugs from actively growing colonies of PoSp were inoculated on WSEA plates, and 5 mm diameter plugs of Trichoderma were inoculated 40 mm apart on the same plates 48 h later. All combinations of Trichoderma × PoSp were performed in triplicate. All plates were maintained at 25 °C in the dark. For measuring the competitive capacity of Trichoderma versus PoSp, the colonization of substrate by Trichoderma was evaluated 24, 48 and 72 h after inoculation using the method of Camporota (1985) with the formula $(D_1 \times 100)/D_2$, where D_1 is the distance covered by Trichoderma along the line which connects the two inoculated plugs, and D_2 is the distance between the two plugs (40 mm).

The hyphal interactions were studied on WSEA plates covered by a sterile cellophane layer (Safta) and inoculated as specified above with both fungi. After 24 h of incubation, the cellophane was removed and a 1 cm² portion from the interaction area was stained with 0.5% trypan blue (1:1:1; lactic acid:glycerol:water), then inspected by using an Eclipse TE2000-E microscope at ×400 magnification. The types of hyphal interaction were classified as coiling, penetration, vacuolation and coagulation of cytoplasm (Dennis & Webster, 1971c).

The ability of *Trichoderma* to produce nonvolatile metabolite(s) against PoSp colony growth was determined by the method of Dennis & Webster (1971a). A 5 mm diameter plug of each *Trichoderma* strain was inoculated in the centre of a sterile

cellophane disc laying on a 9 cm WSEA plate. After 24 h, the cellophane with the colony was removed and a 5 mm diameter plug of PoSp was inoculated in the centre of the plate. The diameter of the PoSp colonies was determined after 48, 72 and 96 h, and compared with that of PoSp WSEA *Trichoderma*-free plates. Four replicates for each treatment were considered.

The ability of *Trichoderma* to produce volatile metabolite(s) active against PoSp mycelial growth was determined by the apparatus of Camporota (1985), consisting of two bottom halves of WSEA plates on top of each other, separated by an inox lid with a central hole closed by a sliding flap. One bottom half was previously inoculated with a 5 mm plug of each *Trichoderma* strain separately, and the other with a 5 mm plug of PoSp. After 72 h of incubation in the dark at 24–25 °C, the hole was opened to allow volatile metabolites from *Trichoderma* to act against PoSp mycelium growth. Then, after 48, 72 and 96 h, the diameter of PoSp colonies was measured as specified above.

All *in vitro* and *in vivo* experiments were repeated once with similar results. The data of one experiment are reported.

Statistical analysis

Data of colony growth rate at different prochloraz doses were analysed by two-way (two factors: fungal strain and fungicide dose) ANOVA, and compared by Student–Newman–Keuls (SNK) test. Data of *Trichoderma* colonization rate were analysed by three-way (three factors: fungal species, fungal density and prochloraz dose) ANOVA, and compared by SNK test. Statistical procedures were carried out with STATGRAPHIC PLUS v. 2.1 software (Statistical Graphics Corp.).

Results

Isolation and identification of Trichoderma strains

Fourteen Trichoderma strains were selected on the basis of morphological features. The multiplex PCR assay with tef1 sequence-based primers FPforw1, FPrev1 and PSrev1 showed eight samples with two bands of 447 bp and 218 bp, indicating the presence of T. pleuroti, and four samples with a single band of 447 bp, indicating the presence of T. pleuroticola. Two samples, AFS 501 and AFS 446, were not amplified (Fig. S1). The ITS sequence of AFS 501 showed 100% identity with T. harzianum (MG832456.1), and that of AFS 446 showed 99% identity with T. harzianum (MH333257.1) deposited in NCBI. Subsequent identification by tef1 sequence-based primers TEF1LLErev and EF1-728 F showed 100% identity with T. guizhouense ex-type HGUP 0038/CBS 131803 (JN215484) for both strains. The tef1 guizhouense sequences of T. AFS 501 and AFS 446 were deposited in the NCBI GenBank database with accession numbers MH922983 and MH922984, respectively.

In a preliminary dual plate assay, all *T. pleuroti* strains showed similar antagonistic activity towards *P. ostreatus* colony growth. Two strains, *T. pleuroti* AFS 492 (Tpi 492) and AFS 497 (Tpi 497), were used in *in vitro* experiments. *Trichoderma pleuroticola* strains also showed similar antagonistic activity against *P. ostreatus*, and two

strains, AFS 432 (Tpa 432) and AFS 488 (Tpa 488), were selected. Both *T. guizhouense* AFS 446 (Tg 446) and AFS 501 (Tg 501) were also used.

Effect of prochloraz on *Trichoderma* colony growth and spore germination

The colony growth rate of Trichoderma strains at different prochloraz doses are reported in Table 1. Twoway ANOVA indicated that for all Trichoderma, the dose factor was significant (P < 0.05), whereas the strain factor and the interaction between the two factors were not significant. For Tg 446 and Tg 501, the highest doses of prochloraz, 0.25 and 1.25 µL L⁻¹, significantly reduced the mean colony growth rate by 22.3% and 86.7%, respectively compared with the untreated control. For Tpa 432 and Tpa 488, all doses significantly reduced the mean colony growth rate. The 1.25 μ L L⁻¹ dose completely inhibited colony growth and the 0.25 μ L L⁻¹ dose reduced mean colony growth by 89.5%, while the two lowest doses (0.05 and 0.01 µL L-1) decreased the mean colony growth rate by 45.4% and 19.0%, respectively, for Tpa 432 and Tpa 488. For Tpi 492 and Tpi 497, all doses significantly reduced the mean colony growth rate. The 1.25 and $0.25~\mu L~L^{-1}$ doses completely inhibited colony growth, while the 0.05 and 0.01 μL L^{-1} doses decreased mean

Table 1 Colony growth rate (mm day⁻¹) of *Trichoderma guizhouense* 446 and 501, *T. pleuroticola* 432 and 488, and *T. pleuroti* 492 and 497 at different prochloraz doses.

colony growth rate by 69.3% and 15.1%, respectively, for Tpi 492 and Tpi 497.

None of the prochloraz doses showed any effect on PoSp colony growth. The values of colony growth were 10.2 ± 0.0 mm per day for the control, and 10.1 ± 0.0 , 10.1 ± 0.1 , 10.0 ± 0.1 and 9.8 ± 0.5 mm per day for prochloraz doses of 0.01, 0.05, 0.25 and 1.25 μ L L⁻¹, respectively.

The effect of prochloraz on spore germination of *Trichoderma* strains is reported in Table 2. Complete inhibition of all *Trichoderma* strains occurred at 1.25 μ L L⁻¹, and of both Tpi strains at 0.25 μ L L⁻¹. The spore germination of both Tpa strains gradually decreased from 0.05 to 0.25 μ L L⁻¹, and of both Tpi strains from 0.01 to 0.05 μ L L⁻¹.

In vivo assay

Because the two strains of each *Trichoderma* showed similar results in *in vitro* experiments, only one strain of each species, namely Tpa 432, Tpi 492 and Tg 501, was used for the *in vivo* assay. No symptoms of green mould disease were observed in any containers inoculated with Tg 501. The growth of PoSp mycelium was optimal in the untreated control inoculated with the highest *Trichoderma* concentration. Colonies of Tg 501 developed from samples of infected control substrate plated on TSM.

	Prochloraz dose (μ L L $^{-1}$)					
Trichoderma	0	0.01	0.05	0.25	1.25	
T. guizhouense						
446	32.5 ± 2.1	32.8 ± 1.9	32.8 ± 2.9	27.3 ± 1.3	3.9 ± 1.4	
501	34.8 ± 1.4	34.8 ± 2.6	35.8 ± 1.6	24.8 ± 1.2	5.2 ± 1.4	
Mean	$33.6 \pm 2.0 \text{ c}$	$33.8\pm2.3\;\mathrm{c}$	$34.3\pm2.7\;\mathrm{c}$	$26.1 \pm 1.8 \ b$	$4.5 \pm 1.4 \ a$	
T. pleuroticola						
432	37.4 ± 1.9	31.3 ± 1.3	21.4 ± 2.8	4.3 ± 1.6	0.0 ± 0.0	
488	38.8 ± 1.9	30.3 ± 1.5	20.3 ± 1.9	3.7 ± 1.1	0.0 ± 0.0	
Mean	38.1 \pm 1.9 e	$30.8\pm1.4\;d$	$20.8\pm5.2\;\mathrm{c}$	4.0 ± 8.7 b	0.0 ± 0.0 a	
T. pleuroti						
492	26.1 ± 1.3	22.4 ± 1.4	8.1 ± 2.1	0.0 ± 0.0	0.0 ± 0.0	
497	26.8 ± 1.9	22.3 ± 1.0	8.1 ± 1.8	0.0 ± 0.0	0.0 ± 0.0	
Mean	$26.4\pm2.8\;d$	22.4 \pm 1.1 c	8.1 ± 1.8 b	0.0 ± 0.0 a	0.0 ± 0.0 a	

For each *Trichoderma* species, the dose factor was significant, whereas the strain and the dose \times strain interaction factors were not significant according to two-way ANOVA (P < 0.05). The data are the means \pm SD. Data in the row followed by the same letter did not differ significantly according to Student-Newman-Keuls test (P < 0.05).

Table 2 Effect of different prochloraz doses on spore germination (%) of *Trichoderma guizhouense*, *T. pleuroticola* and *T. pleuroti* strains. 12 h after inoculation.

	T. guizhouense		T. pleuroticola		T. pleuroti	
Dose ($\mu L \ L^{-1}$)	446	501	432	488	492	497
0	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0
0.01	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	80.0 ± 5.0	70.3 ± 2.1
0.05	100 ± 0.0	100 ± 0.0	59.7 ± 4.5	67.3 ± 8.7	35.0 ± 7.0	36.7 ± 2.9
0.25	60.3 ± 6.5	72.6 ± 7.8	25.3 ± 2.1	22.7 ± 3.5	0.0 ± 0.0	0.0 ± 0.0
1.25	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0

The data are the means \pm SD.

G. Innocenti et al.

Table 3 Multifactor ANOVA for substrate colonization by *Trichoderma* pleuroticola 432 and *T. pleuroti* 492 during spawn run phase of *Pleurotus ostreatus* 'Spoppo' cultivation cycle.

Source	d.f.	Sum of squares	Mean square	F
Trichoderma species (TS)	1	36.75	36.75	190.56***
Trichoderma	1	3.0	3.0	15.56***
concentration (TC)				
Prochloraz dose (D)	3	79.1667	26.3889	136.83***
$TS \times TC$	1	0.75	0.75	3.89
$TS \times D$	3	18.4167	6.13889	31.83***
$TC \times D$	3	1.16667	0.388889	2.02
Error	35	6.75	0.192857	
Corr. total	47	146		

^{***} $P \le 0.001$.

Molecular identification confirmed that the fungus was present, but it was not responsible for the green mould disease. Therefore, Tg 501 data were not considered for statistical analysis. Multifactor ANOVA (Table 3) based on Tpa 432 and Tpi 492 data indicated that Trichoderma species (TS), Trichoderma concentration (TC) and prochloraz dose (D) factors, and the interaction TS × D were significant ($P \le 0.001$). Figure 1 shows the effect of any single factor on colonization growth rate by Trichoderma. Tpi 492 colonized the substrate more efficiently than Tpa 432 (Fig. 1a), and 10⁵ spores mL⁻¹ concentration determined the highest colonization (Fig. 1b). Independently of Trichoderma species and spore concentration, 1.25 and 0.25 µL L⁻¹ fungicide doses significantly reduced substrate colonization (Fig. 1c). Data of TS × D interaction are reported in Table 4. In the untreated substrate, Trichoderma species showed different colonization scores: 2.2 for Tpa 432 and 4.0 for Tpi 492. Upon prochloraz treatment, the growth of Tpi 492 was significantly inhibited only at 1.25 μL L⁻¹, whereas that of Tpa 432 was inhibited both at 0.25 and 1.25 μ L L⁻¹.

Trichoderma × Pleurotus interaction

The substrate colonization values of Tg 501, Tpa 432 and Tpi 492 in dual culture with PoSp are reported in Table 5. Tpi 492 was the most, and the Tg 501 the least competitive strain. After 4 days, Tpa 432 and Tpi 492 colonies were able to completely overgrow the PoSp colony with intense conidiation, whereas Tg 501 did not overgrow the PoSp colony after contact. No *Trichoderma* strain caused any inhibitory effect by volatile or nonvolatile metabolites on PoSp growth (data not shown). Regarding hyphal interactions, most of the *Trichoderma* hyphae grew parallel to PoSp hyphae, and numerous hyphal tips of PoSp were dichotomous. Coiling and hyphal penetration were not observed.

Discussion

Pleurotus ostreatus is one of the most cultivated mushrooms worldwide, and its production is increasing;

Trichoderma concentration (spore mL⁻¹)

Figure 1 In vivo assay: main effects of each factor ($P \le 0.0001$), Trichoderma species (a), Trichoderma concentration (b), and prochloraz dose (c) on substrate colonization rate (0–4) by T. pleuroticola (Tpa 432) and T. pleuroti (Tpi 492) during spawn run. Each error bar represents SD. Different letters indicate significant differences according to Student–Newman–Keuls test (P < 0.05).

Table 4 *In vivo* assay: effect of different doses of prochloraz on substrate colonization (0–4) by *Trichoderma pleuroticola* (Tpa 432) and *T. pleuroti* (Tpi 492) 3 weeks after prochloraz treatment.

	Prochloraz dose (μL L ⁻¹)				
Species	0	0.05	0.25	1.25	
			0.0 ± 0.0 aA 3.5 ± 0.8 bB		

Mean values \pm SD followed by the same uppercase letter in a row and by the same lowercase letter in a column are not significantly different according to Student-Newman-Keuls test (P < 0.05).

Table 5 Colonization rate (0–100) of wheat straw extract agar substrate by *Trichoderma guizhouense* (Tg 501), *T. pleuroticola* (Tpa 432) and *T. pleuroti* (Tpi 492) in dual culture with *Pleurotus ostreatus* 'Spoppo' measured 24, 48 and 72 h after *Trichoderma* inoculation.

Time (h)	Tg 501	Tpa 432	Tpi 492
24	$16.7 \pm 2.9 a$	$24.2 \pm 1.4 \mathrm{b}$	40.8 ± 3.8 c
48	$34.2 \pm 2.9 \ a$	$55.8 \pm 1.4 b$	66.7 ± 2.9 c
72	Contact ^a	Overgrowth ^b	Overgrowth ^b

Mean values \pm SD followed by the same letter in a row are not significantly different according to Student-Newman-Keuls test (P < 0.05).

however, it is susceptible to a variety of diseases. One of the most serious diseases is the green mould caused by some Trichoderma species, i.e. T. harzianum, T. pleuroticola and T. pleuroti (Hatvani et al., 2007, 2012; Woo et al., 2009). The role of T. harzianum is not still clear. The T. harzianum isolate here, reidentified as T. guizhouense (Bisset et al., 2015; Chaverri et al., 2015), was not responsible for the disease, even when it was inoculated in the growing substrate at a high concentration. This finding is in accordance with Komon-Zelazowska et al. (2007), Hatvani (2008) and Hatvani et al. (2012), who stated that T. pleuroticola and T. pleuroti were the causal agents for the oyster mushroom green mould disease, and is in contrast to Woo et al. (2009) who considered T. harzianum problematic to P. ostreatus. Hatvani (2008) and Hatvani et al. (2012) reported that T. harzianum was not detected from green mould-affected samples of the growing substrate collected from oyster mushroom farms. The present study found that T. pleuroti, in both in vitro and in vivo experiments, was more aggressive than T. pleuroticola against P. ostreatus.

Prochloraz is the only fungicide registered for application in Italian mushroom farms. Few studies have investigated the sensitivity to fungicides of Trichoderma species pathogenic to P. ostreatus (Hatvani, 2008; Woo et al., 2009; Hatvani et al., 2012). In these studies prochloraz controlled spore germination and mycelium growth of Trichoderma isolates without negative effects to P. ostreatus (Hatvani, 2008; Woo et al., 2009). The present study confirmed, as expected, that prochloraz was not toxic to P. ostreatus, and that the fungicide was very effective against both Trichoderma pathogenic species. Trichoderma pleuroti and T. pleuroticola strains on WSEA plates showed a similar sensitivity to prochloraz at field dose, consistent with the results of Hatvani et al. (2012) on yeast extract-glucose medium. These in vitro results were confirmed in the in vivo assay. Indeed, when the fungicide was applied at field dose in a small-scale experiment reproducing the spawn run phase of the cultivation cycle, no green mould disease symptoms were observed by either *Trichoderma* pathogenic species.

However, despite the evident efficacy of prochloraz and its widespread use in mushroom farms, the disease is increasing. Based on the present data, it could be hypothesized that prochloraz is able to control the primary infections by airborne spores of *Trichoderma*, but not the secondary ones, which occur when the fungicide concentration has declined and is no longer effective (Potočnik *et al.*, 2015).

It is well known that *Trichoderma* are important biocontrol agents against several plant pathogens, and that they use several mechanisms such as mycoparasitism, antibiosis, competition for carbon, nitrogen and other growth factors, together with competition for space or specific infection sites (Harman, 2006). Here, it was found that the mycelium of *Trichoderma* was more competitive than oyster mushroom mycelium for space and nutrients, whereas neither hyphal interaction nor any effect by volatile or nonvolatile metabolites was observed. It is supposed that enzyme systems such as proteases, lipase, chitinase and glucanase could also be involved in the mycoparasitic potential of *T. pleuroti* and *T. pleuroticola* towards *P. ostreatus*, as showed by Hatvani (2008).

Finally, this study has provided evidence that, under the given experimental conditions, *T. guizhouense* was not responsible for green mould disease, and that prochloraz is effective against both *T. pleuroticola* and *T. pleuroti*. However, the treatment at spawn is not sufficient to ensure protection during the whole oyster mushroom cultivation cycle. Unfortunately, only one fungicide application is possible, because the substrate is bagged immediately after spawn. Therefore, it is important to prevent contamination by *Trichoderma* spores by improving farm hygiene.

Acknowledgements

The authors thank Dr Federico Magnani, Fungar, Coriano, RN, Italy, for his suggestions for the *in vivo* assay and Dr Antonio Prodi, Distal, University of Bologna, Italy, for assistance in *T. guizhouense* identification.

References

Alfonzo A, Torta L, Burruano S, 2008. Specie di *Trichoderma* associate alla muffa verde di *Pleurotus ostreatus*. *Micologia Italiana* 3, 39–45. Altschul SF, Madden TL, Schaffer AA *et al.*, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25, 3389–402.

Bisset J, Gams W, Jaklitsch W, Samuels GJ, 2015. Accepted *Trichoderma* names in the year 2015. *IMA Fungus* 6, 263–95.

Błaszczyk L, Siwulski M, Sobieralski K, Frużyńska-Jóźwiak D, 2013. Diversity of *Trichoderma* spp. causing *Pleurotus* green mould diseases in central Europe. *Folia Microbiologica* 58, 325–33.

Camporota P, 1985. Antagonisme in vitro de Trichoderma spp. vis-à-vis de Rhizoctonia solani Kühn. Agronomie 5, 613–20.

Carbone I, Kohn LM, 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91, 553–6. Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T,

Samuels GJ, 2015. Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. *Mycologia* 107, 558–90.

Da Silva RZ, Neves PMOJ, 2005. Techniques and parameters used in compatibility tests between *Beauveria bassiana* (Bals.) Vuill and

^aMutual inhibition at mycelial contact.

^bOvergrowth of *Trichoderma* on *P. ostreatus* mycelium.

398

- in vitro phytosanitary products. Pest Management Science 61, 667-74.
- Dennis C, Webster J, 1971a. Antagonistic properties of species-groups of Trichoderma. I Production of non-volatile antibiotics. Transactions of the British Mycological Society 57, 25–39.
- Dennis C, Webster J, 1971b. Antagonistic properties of species-groups of Trichoderma. II Production of volatile antibiotics. Transactions of the British Mycological Society 57, 41–8.
- Dennis C, Webster J, 1971c. Antagonistic properties of species-groups of Trichoderma. III Hyphal interaction. Transactions of the British Mycological Society 57, 363–9.
- Gardes M, Bruns TD, 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2, 113–8.
- Gea FJ, 2009. First report of Trichoderma pleurotum on oyster mushroom crops in Spain. Journal of Plant Pathology 91, 504.
- Harman GE, 2006. Overview of mechanisms and uses of *Trichoderma* spp. *Phytopathology* 96, 190–4.
- Hatvani L, 2008. Mushroom Pathogenic Trichoderma Species: Occurrence, Diagnosis and Extracellular Enzyme Production. Szeged, Hungary: University of Szeged, PhD thesis.
- Hatvani L, Antal Z, Manczinger L et al., 2007. Green mould diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97, 532–7.
- Hatvani L, Sabolic P, Kocsube S et al., 2012. First report of mushroom green mould disease in Croatia. Archives of Industrial Hygiene and Toxicology 63, 481–7.
- Innocenti G, Montanari M, 2014. Trichoderma green mould disease: a case study in a Pleurotus ostreatus farm. Preliminary data. Micologia Italiana 1-2-3, 49–57.
- Innocenti G, Roberti R, Piattoni F, 2015. Biocontrol ability of Trichoderma harzianum strain T22 against Fusarium wilt disease on water-stressed lettuce plants. BioControl 60, 573–81.
- Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS, 2005.
 Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97, 365–78.
- Jayalal RGU, Adikaram NKB, 2007. Influence of *Trichoderma harzianum* metabolites on the development of green mould disease in the oyster mushroom. *Ceylon Journal of Science* 36, 53–60.
- Komon-Zelazowska M, Bisset J, Zafari D et al., 2007. Genetically closely related but phenotypically divergent *Trichoderma* species cause green mold disease in oyster mushroom farm worldwide. *Applied and Environmental Microbiology* 73, 7415–26.
- Kredics L, Hatvani L, Antal Z et al., 2006. Green mould disease of oyster mushroom in Hungary and Transylvania. Acta Microbiologica et Immunologica Hungarica 53, 306–7.
- Kredics L, Kocsube S, Nagy S et al., 2009. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiology Letters 300, 58–67.

- Park MS, Bae KS, Yu SH, 2006. The new species of *Trichoderma* associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34, 11–3.
- Potočnik J, Stepanović M, Rekanović E, Todorović B, Milijašević-Marčić S, 2015. Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. *Pesticides and Phytomedicine* 30, 201–8.
- Rajendran C, Baby A, Kumari S, Verghese T, 1991. An evaluation of straw-extract agar media for the growth and sporulation of Madurella mycetomatis. Mycopathologia 115, 9–12.
- Reeslev M, Kjoller A, 1995. Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology 61, 4236–9.
- Sharma SR, Vijay B, 1996. Yield loss in *Pleurotus ostreatus* spp. caused by *Trichoderma viride*. Mushroom Research 5, 19–22.
- Smith VL, Wilcox WF, Harman GE, 1990. Potential of biological control of *Phytophthora* root and crown rots of apple by *Trichoderma* and *Gliocladium* spp. *Phytopathology* 80, 880–5.
- Sobieralski K, Siwulski M, Kommon-Żelazowska M, Błaszczyk L, Sas-Golak I, Frużyńska-Jóźwiak D, 2012. Impact of Trichoderma pleurotum and T. pleuroticola isolates on yielding of Pleurotus ostreatus (Fr.) Kumm. Journal of Plant Protection Research 52, 165–8.
- White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: A Guide to Methods and Applications. New York, NY, USA: Academic Press, 315–22.
- Woo SL, Di Benedetto P, Senatore M et al., 2004. Identification and characterization of *Trichoderma* species aggressive to *Pleurotus* in Italy. *Journal of Zhejiang University Agriculture Life Sciences* 30, 469–70.
- Woo SL, Kubicek CP, Druzhinina IS, Vinale F, Cavallo P, Lorito M, 2009. Characterization of *Trichoderma* species associated with the production of *Pleurotus ostreatus* in Italy. *Journal of Plant Pathology* 91, S4.94.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

Figure S1. DNA fragments amplified from 14 isolates of *Trichoderma* spp. in a multiplex PCR using primers specific for *Trichoderma pleuroti* and *T. pleuroticola*. Lane M, Bench Top 100 bp DNA ladder (Promega); lanes 1, 2, 3 and 6, *T. pleuroticola*; lanes 4, 5, 7, 8, 9, 10, 11 and 12, *T. pleuroti*; lanes 13 and 14, no DNA amplification; lane 15, negative control (no template DNA). Lanes 2 and 6, *T. pleuroticola* AFS 432 and AFS 488, respectively; lanes 7 and 9, *T. pleuroti* AFS 492 and AFS 497, respectively; lanes 13 and 14, AFS 446 and AFS 501, respectively.