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Summary 13 

Biotic invasions threaten global biodiversity and ecosystem function. Such incursions present 14 

challenges to agriculture where invasive pest species cause significant production losses require major 15 

economic investment to control and can cause significant production losses. Pest Risk Analysis (PRA) 16 

is key to prioritizing agricultural biosecurity efforts, but is hampered by incomplete knowledge of 17 

current crop pest and pathogen distributions. Here we develop predictive models of current pest 18 

distributions and test these models using new observations at sub-national resolution. We apply 19 

generalized linear models (GLM) to estimate presence probabilities for 1739 crop pests in the CABI 20 

pest distribution database. We test model predictions for 100 unobserved pest occurrences in the 21 

People’s Republic of China (PRC), against observations of these pests abstracted from the Chinese 22 

literature. This resource has hitherto been omitted from databases on global pest distributions. Finally, 23 

we predict occurrences of all unobserved pests globally. Presence probability increases with host 24 

presence, presence in neighbouring regions, per capita GDP, and global prevalence. Presence 25 

probability decreases with mean distance from coast and known host number per pest. The models were 26 

good predictors of pest presence in Provinces of the PRC, with area under the ROC curve (AUC) values 27 

of 0.75 – 0.76. Large numbers of currently unobserved, but probably present pests (defined here as 28 

unreported pests with a predicted presence probability > 0.75), are predicted in China, India, southern 29 

Brazil and some countries of the former USSR. Our results shows that GLMs can predict presences of 30 

pseudo-absent pests at sub-national resolution. The Chinese scientific literature has been largely 31 

inaccessible to Western academia but contains important information that can support PRA. Prior 32 

studies have often assumed that unreported pests in a global distribution database represents a true 33 

absence. Our analysis provides a method for quantifying pseudo-absences to enable improved PRA and 34 

species distribution modelling. 35 
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Introduction 41 

The spread of invasive species is homogenizing the biosphere, with wide-ranging implications for 42 

natural ecosystems (Baiser et al., 2012; Santini et al., 2013) and agriculture (Fisher et al., 2012; Bebber 43 

et al., 2014a; Bebber, 2015). The number of first observations of crop pests and pathogens has 44 

accelerated in recent years, driven primarily by global trade (Ding et al., 2008; Bacon et al., 2014), but 45 

also potentially by climate change and our improving ability to monitor and identify threats (Bebber et 46 

al., 2014a; Bebber, 2015). Here, we use the term ‘pest’ to describe any herbivorous arthropod, 47 

pathogenic microbe or virus known to attack agricultural crops. Emerging pests can be extremely 48 

damaging to agricultural production and the economy, causing both pre-harvest and post-harvest losses 49 

(Bebber & Gurr, 2015; Paini et al., 2016; Savary et al., 2017). Recently, for example, sub-Saharan 50 

Africa has suffered from the virulent Ug99 strain of the wheat stem rust fungus (Puccinia graminis 51 

tritici) (Patpour et al., 2015), the newly-evolved Maize Lethal Necrosis viral syndrome (Wangai et al., 52 

2012), arrival of the Asian citrus psyllid (Diaphorina citri) which vectors citrus greening disease 53 

(Shimwela et al., 2016), and the appearance of Tropical Race 4 of Fusarium oxysporum f. sp. cubense 54 

attacking Cavendish bananas (Ordonez et al., 2015). Central America, Europe, East Africa and 55 

Australia have been identified as hotspots of new pest invasions, with maize, bananas, citrus and potato 56 

as the crops most likely to be affected (Bebber, 2015). Outbreaks of resident pests due to favourable 57 

weather conditions, virulence evolution, or crop management factors, add to the burden on farmers. For 58 

example, a major outbreak of coffee leaf rust (Hemileia vastatrix) in Latin America, likely to have been 59 

triggered by a failure in disease management, is reported to have caused large-scale unemployment and 60 

social upheaval in recent years (Avelino et al., 2015). 61 

 62 

Despite the expanding ranges of many pests, complete occupation of their potential ranges has not yet 63 

occurred (Bebber et al., 2014a) and so there remains a strong impetus for implementation of biosecurity 64 

measures at international borders (Fears et al., 2014; Flood & Day, 2016; MacLeod et al., 2016). 65 

Control of spread within countries is extremely difficult because of unhindered transport of plants and 66 

soils (Ward, 2016), and biosecurity measures focus on quarantine and inspections at borders (MacLeod 67 

et al., 2016). A key component of international phytosanitary action is Pest Risk Analysis (PRA), a 68 

suite of methods that allow countries to prioritize protective measures against those pests most likely to 69 

arrive and cause serious economic damage (Robinet et al., 2012; Baker et al., 2014). PRA involves 70 

assessment of the likelihood of pest arrival, the likelihood of establishment, the potential economic 71 

impact if uncontrolled, and the prospect of successful control or eradication (Baker et al., 2014). To 72 

date, PRA has primarily been based upon expert opinion regarding the likelihood of arrival and potential 73 

impact of individual pests. For example, the UK’s recently-established Plant Health Risk Register 74 

(PHRR) (Baker et al., 2014) employs simple climate-matching (based on known pest distributions) and 75 

host availability to assign qualitative risks of invasion and impact, but not quantitative predictive 76 

models. Examples of registered pests include the Oleander aphid Aphis nerii which has been assigned 77 
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very low likelihoods of arrival and establishment, and would cause negligible damage if it did, whereas 78 

the Zebra chip phytoplasma Candidatus liberibacter solanacearum is thought moderately likely to 79 

arrive and would have a very serious impact if it did (DEFRA, 2018). 80 

 81 

While quantitative PRA protocols have been recently developed recently by the European Food Safety 82 

Authority (Jeger et al., 2018), examples of quantitative PRA are rare in international phytosanitary 83 

legislation and practice. This contrasts with the long and vibrant history of research in predictive species 84 

distribution modelling (SDM) for pests (Elith & Leathwick, 2009; Sutherst, 2014). The geographic 85 

distributions of species are non-random, determined by their biotic environment (e.g. hosts or prey), the 86 

abiotic environment (e.g. climate, edaphic factors), and migration (dispersal to suitable habitat) 87 

(Soberón & Peterson, 2005; Soberón, 2007; Soberón & Nakamura, 2009). Thus, pest invasion risk is, 88 

in theory, quantifiable. Numerous modelling approaches are now available to predict the likely 89 

distributions and impacts of pests (Elith & Leathwick, 2009; Venette et al., 2010; Robinet et al., 2012), 90 

ranging from process-based, or mechanistic models, to statistical, or correlative approaches (Dormann 91 

et al., 2012). Regional and global databases on known pest distributions are commonly used to 92 

parameterize these models, either providing direct estimates of pests’ ecological niches (Venette et al., 93 

2010; Kriticos, 2012), or indirectly via shared geographic ranges (Paini et al., 2010, 2016; Eschen et 94 

al., 2014). 95 

 96 

One seldom-acknowledged issue with pest distribution data in global databases is geographic bias in 97 

the likelihood that a pest will be detected, correctly identified, reported and recorded (Pyšek et al., 98 

2008). Analysis of one of the most widely studied global pest distribution databases suggests that 99 

hundreds of pests already present in many developing countries have not been reported (Bebber et al., 100 

2014b). The total number of observed pests in an administrative area (country, or administrative 101 

division for larger countries) can be largely explained by scientific capacity and agricultural production. 102 

Under a scenario of globally high scientific and technical capacity (i.e. where all countries have US-103 

level per capita GDP and research expenditure), analysis predicts that many countries across the 104 

developing world would report hundreds more pests. This suggests that a large fraction of the current 105 

agricultural pest burden is unreported and unknown, and that even the best global databases suffer from 106 

severe observational bias. This has potentially serious consequences for both plant biosecurity activities 107 

and for research based upon these databases. Such observational bias may have implications for SDM 108 

methods that infer environmental tolerances from observed distributions. Scientific capacity, economic 109 

development, and the ability to detect, identify and report pests, are strongly correlated with latitude, as 110 

is climate (Bebber et al., 2014b). Under-reporting of pests at low latitudes will therefore bias estimation 111 

of climate tolerances, as occurrence is underreported in warmer regions. Reducing this observational 112 

bias by strengthening pest identification efforts in the developing world is therefore critical in 113 

improving scientific understanding of pest distributions, and in PRA. 114 
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 115 

The People’s Republic of China (henceforth referred to as China) has been predicted to harbour the 116 

largest number of pests (Bebber et al., 2014b). China produces the largest quantity of crops by tonnage 117 

globally, and has the greatest diversity of production. Both factors are strong determinants of recorded 118 

pest numbers (Bebber et al., 2014b). Yet, the actual recorded number of pests in China is much smaller 119 

than expected (Bebber et al., 2014b). For many countries, under-reporting of agricultural pests is likely 120 

to be purely a function of the lack of institutional capacity to detect, identify, and report incidences in 121 

the scientific and ‘grey’ literature used by CABI to populate the distribution database. For China, there 122 

is potentially an interesting alternative. The Chinese literature was, until the reforms of 1978, largely 123 

inaccessible to Western academia. Even post-reform and the opening of China instigated by Deng 124 

Xiaoping, Chinese-language publications are not commonly accessed by English-speaking researchers. 125 

A scientifically-important translation of the Chinese literature is the reporting of the anti-malarial 126 

compound artemisinin (Klayman, 1985). The Chinese research literature, having developed isolated 127 

from the Western literature, therefore provides a potentially independent data source for testing models 128 

of pest distributions. 129 

 130 

Here, we develop statistical models of global pest presence using a database of known pest occurrences 131 

and confront the predictions of individual pest or pathogen presence in China’s provinces with 132 

observations from the Chinese literature. In addition, we compare models in which pest absences are 133 

treated as true absences with models in which absences are weighted according to estimates of scientific 134 

and technical capacity of a given country to report plant health risks, to investigate the effect of 135 

observational bias and pseudoabsences in pest distribution modelling. We then apply our distribution 136 

models globally to all unreported pests in all regions, to give predicted probabilities of presence. Finally, 137 

we list those pests that are probably present, but as yet unreported, around the world. 138 

 139 

Materials and Methods 140 

We obtained pest distribution data from the CABI Knowledge Bank database in January 2014 with 141 

permission (CABI, Wallingford, UK). The database comprised 91,030 records of the observed 142 

distributions of 1901 agricultural pests by administrative division of each country, e.g. US States. In 143 

total, 384 geographical units were included in the model, comprising 221 countries plus sub-national 144 

divisions for Australia (7), Brazil (28), Canada (13), China (31), India (33), and the USA (51). 145 

Geographical regions such as Bouvet Island which were smaller than a single pixel (5 arc minute 146 

resolution, or approximately 100 sq. km) of the gridded crop distribution database we employed were 147 

excluded from the analysis. Host crop spatial distributions for 175 crops at 5 arc minute resolution were 148 

obtained from the EarthStat database (http://www.earthstat.org/; Monfreda et al., 2008). Known plant 149 

hosts of each pest were taken from the CABI Knowledge Bank, and the host genera matched to the 150 

genera in the list of 175 crops. Pests without known hosts in this list of 175 crops were excluded from 151 
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the analysis. Pests from taxonomic groups with fewer than 50 species (e.g. Acari, Gastropoda and 152 

various other insect taxa) were also excluded from the analysis. This left a total of 1739 pests comprising 153 

124 species, subspecies and pathotypes of Bacteria, 106 Diptera, 215 Coleoptera, 398 Fungi, 233 154 

Hemiptera, 248 Lepidoptera,  99 Nematoda, 61 Oomycota and 209 viruses. Assigning reported 155 

presences for each pest to each geographical region gave a dataset of 667,776 presences or absences for 156 

each pest-region pair. In total, there were 81,821 presences (12.2 per cent of the total) in the final dataset. 157 

 158 

We developed Generalized Linear Models (GLM), using the glm function (MASS package) in R v.3.4.0 159 

with logit link for binomial data (R Development Core Team, 2017), for the presence or (pseudo-) 160 

absence of each pest in each region. Model predictors were as follows: log-transformed per capita GDP 161 

for the country as a whole in 2016 (World Bank data, http://data.worldbank.org/); log-transformed total 162 

number of crop host genera for the pest (CABI Knowledge Bank, obtained with permission); log-163 

transformed area (ha) of the pest’s host crop distribution (summing planted areas of all known host 164 

crops in each geographical region); log-transformed host crop area (ha) of neighbouring (i.e. with land 165 

border) regions which have reported the pest as present (set to zero if no neighbours have reported the 166 

pest); log-transformed total fraction of regions globally that have reported the pest; and log transformed 167 

distance (km) of crop area to the coast (calculated as the distance of the centroid of the crop area 168 

distribution from the nearest coastline). Log transformations were applied to distribute the predictor 169 

variable values more evenly across the sample space. Briefly, the rationale for these predictors was that 170 

GDP is a proxy for historical trade (Pyšek et al., 2010) and observational capacity (Bebber et al., 171 

2014b), host area indicates the available habitat for each pest, host number indicates the degree of biotic 172 

generalism of the pest, neighbouring-region presence indicates the potential for spread across a land 173 

border, fraction of regions reporting presence indicates global ubiquity and environmental generalism, 174 

and distance to coast indicates proximity to international shipping ports (Chapman et al., 2017). 175 

 176 

We developed two pest distribution models. The ‘unweighted’ model included geographical and 177 

biological predictors and treated all unobserved pests as absent from a region. The ‘weighted’ model 178 

treated unobserved pests as potentially pseudo-absent, using a function of the scientific and technical 179 

capacity of each country (Bebber et al., 2014b). Presences were taken as being correct and 180 

unambiguous, and given a weighting of unity. Absences were weighted by the logarithm of the 181 

agricultural and biological sciences publication output of each country from 1996 – 2016 (Scimago 182 

Lab, 2017), normalized to the logarithm of the output of the USA (the world’s most scientifically 183 

productive country), such that the absence weight w0 = log(s)/log(sUSA). Thus, pests unreported from 184 

scientifically advanced nations were assumed not to be present (or, present at undetectable population 185 

density), while pests unreported from developing nations were less informative of absence. China, with 186 

the second largest research output, had w0 = 0.93, suggesting that non-reporting of a pest should be 187 

relatively strong evidence of its physical absence. However, we hypothesized that non-reporting in the 188 
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CABI databases could be due to lack of translation from the Chinese literature, therefore we set w0 to 189 

zero for China, effectively omitting these pseudo-absences from the analysis. The weighted and 190 

unweighted models were compared with a null model assuming constant presence probability using 191 

Likelihood Ratio Tests. 192 

 193 

To validate the models we predicted the probability of presence for a random sample of 100 as-yet 194 

unobserved pests in all Chinese Provinces, but excluding Taiwan. The Chinese literature was searched 195 

for observations of these unobserved pests in China. We used the text mining methodology designed 196 

by CABI for their Plantwise Knowledge Bank. The following rules were followed to locate pest records 197 

in the Chinese literature: 198 

- Include only papers that are primarily about distribution data, not those where distribution is 199 

mentioned, but where something else is the primary focus. If this is unclear do not process the 200 

paper. 201 

- Mine only the primary literature (including Masters and Doctoral theses), not meta-analyses, 202 

reviews, or non-peer reviewed (“grey”) literature. 203 

- Pest and host names must be preferred scientific names, following the CAB Thesaurus 204 

(www.cabi.org/cabthesaurus/) and the Plant List (http://www.theplantlist.org/). 205 

- Record country and location information given in the paper, including latitude/longitude. CABI 206 

uses five levels for location, from the largest scale (i.e., provincial) to the smallest (i.e., 207 

village/town). 208 

- Record date of observation/collection (entering each year separately) and date of publication. 209 

Can be left blank if not given, or use the date of receipt in the diagnostic laboratory as a 210 

surrogate for date of collection. 211 

- Record pest status – present/not found. Only record absence if pest absence is specifically stated 212 

in the paper.  213 

- Record pest status using only the status terms defined by CABI, and only if used in the paper 214 

e.g. “widespread”, “restricted” “soil only” “greenhouse only” (see CABI guidelines for 215 

complete list). 216 

- Record if the paper was a first record of that pest or not and details of this (e.g. “first record in 217 

<country/location>”, “first record on <host species name>”) 218 

- Only enter data where the pest/pathogen has been clearly identified, not just symptoms seen. 219 

- Record only natural infections, not artificial inoculants. 220 

 221 

Combinations of pests and locations were submitted to several search engines. The priority of search 222 

engines was: Baidu (www.baidu.com), China National Knowledge Infrastructure (CNKI, 223 

http://www.cnki.net), Chongqing VIP Information Company (CQVIP, http://lib.cqvip.com/), and 224 

Wangfang Data (http://www.wanfangdata.com.cn). Baidu is the most popular Chinese internet search 225 
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engine. CNKI is led by Tsinghua University, and supported by ministries of the Chinese Government. 226 

CQVIP, formerly known as Database Research Center under the Chongqing Branch of the Institute of 227 

Scientific & Technical Information of China (CB-ISTIC), was China's first Chinese journal database 228 

research institution. Wanfang Data is an affiliate of the Chinese Ministry of Science & Technology, and 229 

provides access to a wide range of database resources. 230 

 231 

Publication titles were searched first, followed by full text interrogation. The first 50 search results were 232 

scanned before dismissing a search term. The first search term combination was pest name and location 233 

(Province). If this yielded no result, then pest name and various distribution terms were tried. These 234 

distribution terms were: "catalogues" OR "checklists" OR "distribution" OR "inventories" OR "new 235 

records" OR "surveys" OR "geographical distribution" OR "new geographic records" OR "new host 236 

records". Searches included local names in Chinese where these were known or could be identified 237 

from the literature, preferred scientific names, and non-preferred scientific names from CAB Thesaurus 238 

(https://www.cabi.org/cabthesaurus/). Searches continued until one piece of literature was found for 239 

that pest in that region, that fitted all of the requirements for CABI text mining.  240 

 241 

If a pest was not found in any of these searches, it was assumed to be absent from the literature and thus 242 

effectively absent from the region. We cannot prove, however, that a pest is present at very low 243 

population density and has not yet been detected (Crooks, 2005). 244 

 245 

Modelled probabilities of reported pest presence in the global dataset, PG, were obtained from the 246 

predictor variables for each pest-region combination, for each GLM (predict function in R). We then 247 

compared PG with the observed presence-absence data for our Chinese sample data using logistic 248 

regressions (glm function in R) and Receiver-Operator Characteristic (ROC) curves (pROC library for 249 

R). The logistic regression coefficients c and m determine the probability of pest presence in the Chinese 250 

sample as PC = 1/(1 + exp(-(c + mPG))). ROC curves describe the relationship between the true positive 251 

rate (sensitivity, the fraction of presences correctly identified as presences) and false positive rate (1 – 252 

specificity, where specificity is the fraction of absences correctly classified as absences) as the threshold 253 

for a binary classifier is decreased from one (classifying any presence probability less than one as 254 

absent) to zero (classifying any positive probability as present). A good predictor will have a high true 255 

positive rate and low false positive rate for any classification threshold, whereas a poor predictor will 256 

have roughly equal true and false positive rates (i.e., be uninformative). The Area Under Curve (AUC) 257 

for the ROC curves  gives the probability that, for a random pair of presence and absence observations, 258 

the presence probability will be greater for the presence than the absence (Jiménez-Valverde, 2012). 259 

Models with good discrimination ability should have AUC significantly greater than half. 260 

 261 
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For illustration, we identified probably present pests (PPP) as those for which are currently unreported 262 

from a particular region, but for which PG > 0.75 in our weighted model. This threshold was chosen 263 

based on the Kent scale which suggests a probability of 0.75 as an event that would generally be 264 

described as ‘probable’ (Kent, 1994). This is an arbitrary definition but allows us to suggest some of 265 

the pests that PRA and phytosanitary activities may want to focus on. 266 

 267 

Results 268 

Globally, PG increased significantly with presence in neighbouring regions, the area of host crops, the 269 

global prevalence of the pest and per capita GDP in both models (Table 1). PG declined with mean 270 

distance from the coast and known host crop genera per pest. The models explained similar fractions of 271 

the deviance, and had very similar ROC curves with AUC around 88 per cent (Table 1). PG was always 272 

higher for the weighted model, because absences were down-weighted (i.e. fewer true zeros), but 273 

predictions for the two models were very highly correlated (r = 0.98). The models found the highest PG 274 

for Hemiptera and Lepidoptera, and lowest for Nematoda, Bacteria and Acari, compared with other 275 

taxonomic groupings. 276 

 277 

Table 1. GLMs for global pest presence. The unweighted model treated unobserved pests as true 278 

absences. The weighted model weighted pseudo-absences as a function of country scientific capacity. 279 

The unweighted model had AIC = 339872, AUC = 0.88, Nagelkerke R2 = 0.40, McFadden R2 = 0.32. 280 

The weighted model had AIC = 308171, AUC = 0.88, Nagelkerke R2 = 0.37, McFadden R2 = 0.31. 281 

CoastDist is distance of crop centroid from the coast (km), GDP is per capita GDP (US$), Hosts is 282 

reported number of host crop genera, HostArea is harvested area of known host crops, NeigArea is 283 

harvested area of host crops in neighbouring regions that have reported the pest, and Prevalence is the 284 

fraction of all regions that have reported the pest. 285 

 Unweighted model Weighted model 
 

Mean SE Z Pr(>|Z|) Mean SE Z Pr(>|Z|) 

Acari (Intercept) -3.67 0.051 -72.3 0.000 -0.897 0.055 -16.3 0.000 

+ Bacteria -0.091 0.032 -2.9 0.004 -0.073 0.034 -2.2 0.014 

+ Coleoptera 0.036 0.030 1.2 0.240 0.039 0.032 1.2 0.180 

+ Diptera 0.092 0.034 2.7 0.006 0.104 0.036 2.9 0.026 

+ Fungi 0.027 0.028 1.0 0.337 0.033 0.030 1.1 0.380 

+ Hemiptera 0.167 0.029 5.7 0.000 0.150 0.031 4.8 0.000 

+ Lepidoptera 0.145 0.029 4.9 0.000 0.134 0.032 4.2 0.000 

+ Nematoda -0.150 0.033 -4.5 0.000 -0.143 0.035 -4.1 0.000 

+ Oomycota 0.046 0.034 1.4 0.176 0.061 0.037 1.7 0.151 

+ Virus 0.047 0.030 1.6 0.120 0.067 0.033 2.1 0.137 
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log(CoastDist + 1) -0.176 0.004 -49.0 0.000 -0.222 0.004 -57.7 0.000 

log(GDP + 1) 0.295 0.004 81.5 0.000 0.086 0.004 22.3 0.000 

log(Hosts + 1) -0.300 0.004 -71.4 0.000 -0.297 0.005 -65.6 0.000 

log(HostArea + 1) 0.171 0.001 123.1 0.000 0.159 0.001 108.1 0.000 

log(NeigArea + 1) 0.140 0.001 181.2 0.000 0.142 0.001 173.5 0.000 

log(Prevalence) 0.842 0.007 124.3 0.000 0.867 0.007 121.3 0.000 

 286 

We validated the models with reports of pests abstracted from the Chinese literature.  287 

 288 

For illustration, we defined a ‘probably present pest’ (PPP) as one unreported from a region, but with 289 

PG > 0.75 (using the weighted model). Overall, only 4702 of 585955 (0.8 per cent) of all unreported 290 

pest-region combinations fell into this class (Supplementary Table S1). The number of PPPs per pest 291 

category was greatest for Fungi (2052) and Hemiptera (859). Overall, 86 per cent of unreported pest-292 

region combinations were predicted to be unlikely (PG < 0.25). China, India, the USA and Eastern 293 

Europe had the largest numbers of predicted PPPs, along with other parts of East Asia and Southern 294 

Brazil (Figure 1). The top ten PPPs by number of global regions were Cochliobolus heterostrophus 295 

(Ascomycota: Pleosporales, a pathogen of maize), Rhopalosiphum padi (Arthropoda: Hemiptera, cereal 296 

pest), Gibberella fujikuroi (Ascomycota: Hypocreales, rice pathogen), Sitophilus zeamais (Arthropoda: 297 

Coleoptera), maize and rice pest), Schizaphis graminum (Arthropoda: Hemiptera, pest of Poaceae 298 

cereals), Setosphaeria turcica (Ascomycota: Pleosporales, maize pathogen), Aphis spiraecola 299 

(Arthropoda: Hemiptera, wide host range), Nezara viridula (Arthropoda: Hemiptera, legume pest), 300 

Acyrthosiphon pisum (Arthropoda: Hemiptera, legume pest) and Rhopalosiphum maidis (Arthropoda: 301 

Hemiptera, pest of maize and other crops). 302 

 303 
Figure 1. Total number of probably present pests (PPP) in all countries and sub-national regions. 304 

 305 

Total numbers of recorded pests in China’s Provinces and municipalities increased from northern and 306 

central regions to southern and coast regions (Figure 2a), except for the central province of Gansu which 307 

had 826 reported pests. There is no obvious reason why numbers would be so large in Gansu. Here, 308 
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agricultural production is moderate, and there are no particular academic centres which could account 309 

for observational bias. Hence, the Gansu values appear to be an artefact of the CABI database. The 310 

smallest numbers of recorded pests were in the mountainous provinces of Qinghai (0) and Xizang 311 

Zizhiqu (Tibet) (73), the central provinces of Ningxia (48), and the municipalities of Chongqing (24), 312 

Tianjin (3), Beijing (50) and Shanghai (55). Total numbers were largest in the coastal provinces of 313 

Guangdong (301), Zeijiang (294), Jiangsu (293), Fujian (263), and also in the southern provinces of 314 

Yunnan (291) and Sichuan (259). 315 

 316 

 317 
Figure 2. a) Total number of pests recorded in the CABI pest distribution database by China Province 318 

(excluding Taiwan). Hatched region is Gansu, see text for details. b) Total number of probably present 319 

pests (PPP) in China Provinces. 320 

 321 

We validated our models using published pest observations from the Chinese literature. Both models 322 

were significant predictors of pest presence/absence for 100 randomly-sampled pest-Province 323 

combinations, of which 27 were found to be present (Figure 3, Supplementary Table S2). For the 324 

unweighted model, the coefficients of the logistic function were c = -1.73 ± 0.34 and m = 3.52  ± 1.25 325 

(likelihood ratio test vs null model, p = 0.0043). For the weighted model, the coefficients were -1.90 ± 326 

0.38 and 3.19 ± 0.96 (likelihood ratio test, p = 0.0006). The predictive power of the models was also 327 

tested using ROC curves, demonstrating significant discriminant ability with AUC of 0.76 (95 per cent 328 

Confidence Interval 0.66 – 0.86) for the unweighted model, and AUC 0.75 (0.64 – 0.86) for the 329 

weighted model (Figure 3). Our analysis revealed gaps in the CABI database, which is commonly used 330 

for analyses of global pest distributions. Taking one important potato pest, late blight Phytophthora 331 

infestans (Oomycota), as an example, high presence probabilities (> 0.75) were predicted for ten 332 

provinces listed as not reporting this pest in the CABI database. However, this pathogen has been 333 

reported present throughout the potato-growing regions of China, including Guangdong (Guo et al., 334 

2010). 335 

 336 
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 337 
Figure 3. Model prediction tests. Observed presence/absence of 100 pest-province combinations vs. PG 338 

from a) unweighted model and b) weighted model. Curves and shaded areas show mean and 95% CI 339 

for logistic regression fits. Tick marks show observed data. Grey diagonals show identity relationship. 340 

ROC curves for c) unweighted and d) weighted models. Error bars show 95% CI for specificity and 341 

sensitivity derived from 2000 bootstrap replications. 342 

 343 

For China, the total number of PPPs increased from west to east (Figure 2b), and was greatest in the 344 

north eastern provinces of Jilin (59), Heilongjiang (58), and Inner Mongolia (58), the eastern provinces 345 

of Shandong (60) and Anhui (61), well as the ports of Shanghai (71) and Tianjin (51). The eastern 346 

provinces of Xizang Zizhiqu (Tibet) (1), Qinhai (1), Gansu (0) and Ningxia (2) had the lowest numbers, 347 

along with the island of Hainan (0) (Figure 3). The total number of PPPs in China was 827, the majority 348 

being Fungi (332) and Hemiptera (175). The top ten most-common PPPs in China were (in decreasing 349 

order) Gibberella fujikuroi (Ascomycota: Hypocreales, rice pathogen), Aphis spiraecola (Arthropoda: 350 

Hemiptera, generalist), Delia platura (Arthropoda: Diptera, pest of legumes), Acyrthosiphon pisum 351 

(Arthropoda: Hemiptera, legume pest), Rhopalosiphum padi (Arthropoda: Hemiptera, cereal pest), 352 

Schizaphis graminum (Arthropoda: Hemiptera, pest of Poaceae), Curvularia sp. (Fungi: Ascomycota, 353 

generalist pathogen), Rhopalosiphum maidis (Arthropoda: Hemiptera, pest of maize and other crops), 354 

Agrotis ipsilon (Arthropoda: Lepidoptera, generalist pest), Lasiodiplodia theobromae (Ascomycota: 355 

Botryosphaeriales, generalist pathogen). Thus, many of the most common PPPs in China were also 356 

common globally. 357 
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Discussion 359 

The Chinese literature provided strong and significant support for the predictions of pest distribution 360 

models based upon host distribution, pest prevalence, and other socioeconomic factors. China’s 361 

growing economy is expected to lead to large influxes of invasive species, including pests, in coming 362 

years (Ding et al., 2008). Analysis of temporal trends in CABI pest observations show a relatively 363 

smooth increase in pests from 1950-2000, but the pattern for China is more complex, with a slow 364 

increase from 1950 until the late 1970s, a step increase, and then a more rapid growth in pest numbers 365 

from 1980 onwards (Bebber et al., 2014a). One potential determinant of this sudden acceleration is the 366 

strong support for science and technology given by Deng Xiaoping in 1978, which lead to an increase 367 

in funding and academic freedom following the anti-intellectualism of the Cultural Revolution. China 368 

now ranks second only to the USA in annual R&D expenditure (IMF, 2013) and scientific output 369 

(Scimago Lab, 2017).  370 

 371 

We identified a number of pests that were very likely to be present, and the majority of these PPPs were 372 

globally distributed and had wide host ranges. Their distributions commonly spanned wide latitudinal 373 

ranges, indicating broad climatic tolerances. C. heterostrophus, or Southern Leaf Spot, is primarily 374 

known as a pathogen of maize but has a wide host range. It has a wide geographic distribution both 375 

latitudinally and across continents, resulting in a high likelihood of occurrence in other regions where 376 

hosts are present. For example, C. heterostrophus is currently recorded only in eastern regions of North 377 

America, where most maize is grown. The lack of reported observations in the western regions of North 378 

America may be due to the fact that maize, the major host, is uncommon, and hence the disease currently 379 

has little impact. C. sativus, causing root and foot rot, also has a very wide geographic distribution, but 380 

an even wider host range. It is reported from Texas, Oklahoma, Mississippi, Illinois and Tennessee, but 381 

not from neighbouring Arkansas or Missouri. Hence, the high presence probability in these States. A 382 

similar pattern is seen for the maize pathogen S. turcica. Another global species, R. maidis, the green 383 

corn aphid, is reported across Europe and in Russia, but, like many other pests, not from the former 384 

Soviet states of Ukraine, Belarus, Lithuania, Latvia and Estonia. It is plausible that reporting from these 385 

nations was less likely when they were part of the USSR.  386 

 387 

Predictors like host availability, presence in neighbouring territories and global prevalence were 388 

expected to have positive relations with presence probability. The negative relation with distance from 389 

coast is likely to be related to import via shipping ports (Huang et al., 2012; Liebhold et al., 2013), and 390 

supports the observation that islands report more pests than countries with land borders (Bebber et al., 391 

2014b). Detailed modelling of individual pest climate responses (Bregaglio et al., 2012; Kriticos et al., 392 

2013) for such a large number of pests was beyond the scope of this study. Implicitly, we can assume 393 

that the presence of the host crop indicates that the climate is suitable for the pest (Paini et al., 2016), 394 

though we acknowledge that this is not necessarily the case (Berzitis et al., 2014). The negative 395 
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relationship with number of host genera per pest might suggest that host specialists are more likely to 396 

invade and establish than host generalists, once host availability has been taken into account. For the 397 

practical purposes of PRA, our models provide reliable probability estimates for the presence of 398 

unreported pests at subnational resolution, and we have provided a global list of the unreported pests 399 

whose presence is most likely (Table S2). 400 

 401 

We addressed the issue of pseudo-absences in the CABI data by statistically weighting missing pest 402 

observations in proportion to the scientific output of the reporting nation, since scientific output had 403 

been confirmed as a strong determinant of total reported pest numbers (Bebber et al., 2014b). Often, 404 

unreported pests are treated as true absences in pest risk analyses (Paini et al., 2016). The positive 405 

relation of GDP with presence probability supports our hypothesis that wealthy countries are more 406 

likely to detect and report pests (Bebber et al., 2014b). Once observational bias is controlled for using 407 

scientific capacity-based weighting, per capita GDP becomes a weaker determinant. Our weighted 408 

model has similar overall explanatory power to our unweighted model. Nevertheless, the issue of 409 

observational biases related to country-level socioeconomic variation has been raised several times for 410 

various classes of organism (Jones et al., 2008; Pyšek et al., 2008; Westphal et al., 2008; Boakes et al., 411 

2010; Bebber et al., 2013, 2014b), and we therefore recommend the application of appropriate statistical 412 

controls when analysing datasets produced from reports of species presences (as opposed to 413 

distributional datasets derived from rigorous sampling protocols). 414 

 415 

Our SDM was statistical, fitting response functions for various predictors to the probability of pest 416 

presence. Many SDM approaches exist, from highly mechanistic models based on pest biology and 417 

ecology (Bregaglio et al., 2012; Skelsey et al., 2016) to purely statistical models that utilize only 418 

patterns in known distributions (Paini et al., 2010). The rarity of quantitative model input into PRAs is 419 

partly due to the scarcity of empirical data available on pest biology and epidemiology required to 420 

parameterize mechanistic models, and so key biological parameters are often inferred from known 421 

distributions (Robinet et al., 2012). This is particularly the case for newly emergent pathogens for which 422 

experimental investigations have not yet been conducted. The European Food Safety Authority (EFSA) 423 

has developed quantitative PRA guidelines that recommend modelling approaches and data sources for 424 

assessing invasion and establishment risk (Jeger et al., 2018), and application of these methods was 425 

attempted for Diaporthe vaccinii, a pest of blueberries (Jeger et al., 2017). However, most of the 426 

epidemiological data required for this pest was unavailable, and the risk assessment was thus based on 427 

expert opinion or data from related pests (Jeger et al., 2017). Epidemiological parameters can be poorly 428 

constrained even for long-established pests. For example, coffee leaf rust fungus (Hemileia vastatrix) 429 

has affected coffee production for more than a century, but a recent infection model relied upon 430 

temperature response functions derived from the single available study published three decades 431 

previously (Bebber et al., 2016). Initiatives such as the EU-funded PRATIQUE project (2008-11) have 432 
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attempted to fill this knowledge gap and enable modelling by collating available ecophysiological data 433 

for insect pests (Baker, 2012). While the advantages and disadvantages of the many different pest 434 

distribution and impact models continue to be researched and debated (Venette et al., 2010; Dormann 435 

et al., 2012; Robinet et al., 2012; Sutherst, 2014), it is clear that practical application of these methods 436 

in PRA remains limited. 437 

  438 

SDM for pests has direct policy implications for PRA and plant biosecurity. PRA is guided by 439 

International Standards for Phytosanitary Measures (ISPM), which are part of the International Plant 440 

Protection Convention (IPPC) (MacLeod et al., 2010). ISPMs tend to rely on expert judgement for 441 

PRA, rather than quantitative modelling to support decision making. ISPM No. 21 “Pest Risk Analysis 442 

for Regulated Non-Quarantine Pests”, endorsed in 2004, mentions use of pest and host life-cycle and 443 

epidemiological information, but not quantitative modelling (FAO, 2004). Individual PRAs similarly 444 

employ a qualitative approach. For example, the Australian Government’s PRA for Drosophila suzukii 445 

references only a single unpublished report on SDM for this species, conducted for North America. 446 

Probabilities of D. suzukii spread within Australia are qualitatively assessed by comparison with 447 

observations in other countries (Department of Agriculture, Fisheries and Forestry, 2013). The 448 

European and Mediterranean Plant Protection Organization (EPPO) PRAs occasionally include model 449 

results. For example, a climate matching for the bacterium Xanthomonas axonopodis pv. allii was 450 

undertaken using the CLIMEX model, to identify areas at risk within the EPPO region (EPPO, 2008). 451 

However, as discussed previously, appropriate empirical studies are rare (Jeger et al., 2017). Our results 452 

contribute to the quantification of risk within PRA by providing probabilistic estimates for the presence 453 

of hundreds of unreported pests around the world, thereby improving understanding of the threats to 454 

global agriculture. With growing evidence that pest ranges are shifting poleward in response to global 455 

climate change (Bebber et al., 2013), our poor knowledge of pest distributions, particularly in the 456 

developing world, is troubling, both because of the burden these organisms place on farmers who have 457 

little access to detection and control technologies, and because invasions of temperate regions are likely 458 

to occur from warmer regions. Improved targeting of phytosanitary measures through quantitative PRA 459 

is therefore vital to crop protection.  460 
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